Efecto antioxidante del extracto hidroalcohólico de tilia platyphyllos scopoli “tilo de hoja ancha” en isquemia-reperfusión cerebral experimental en ratas

  • Luis Emilio Carranza Quispe Universidad Nacional de Chimborazo
  • Orlando Enrique Pretel Sevillano Universidad Nacional de Chimborazo


Los accidentes cerebrovasculares con sus complicaciones neurológicas son una de las principales causas de morbilidad y mortalidad en el mundo. En la actualidad se busca alternativas para tratar o disminuir el daño haciendo uso de propiedades de plantas medicinales. El presente trabajo evaluó el efecto antioxidante del extracto hidroalcohólico de Tilia platyphyllos Scopoli “tilo de hoja ancha” en isquemia-reperfusión (I/R) cerebral experimental en ratas. Materiales y métodos: Se evaluó el efecto neuroprotector de DE50 (300 mg/kg) y DE100 (600 mg/kg) de la planta frente a la lesión producida por la I/R en el cerebro de ratas, mediante la evaluación de radicales libres y ceruloplasmina,. Las dosis de DE50 y DE100 mostraron su capacidad antioxidante contra la I/R. El mayor efecto neuroprotector ocurrió en la dosis más alta. Sugerimos que la planta T. platyphyllos Scopoli posee efecto antioxidante contra la lesión hipóxica tisular inducida producida por la I/R en ratas.

Biografía del autor

Luis Emilio Carranza Quispe, Universidad Nacional de Chimborazo
Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo
Orlando Enrique Pretel Sevillano, Universidad Nacional de Chimborazo
Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo


• Anna L. P. Chapman, Tessa J. Mocatta, and Anthony J. Kettle. (2013). Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 288(9): 6465–6477.
• Bakhautdin B, Febbraio M, Goksoy E, de la Motte CA, Gulen MF, Childers EP, Hazen SL, Li X and Fox PL. (2013). Protective role of macrophage- derived ceruloplasmin in inflammatory bowel disease. 62(2): 209–219.
• Benarroch EE. (2009 ). Brain iron homeostasis and neurodegenerative disease. Neurology. 72: 1436–1440.
• Biron CA. (2010). More things in heaven and earth: Defining innate and adaptive immunity. Nature Immunology. 11: 1080–1082.
• David O. Kennedy and Emma L. Wightman. (2011). Herbal Extracts and Phytochemicals: Plant Secondary Metabolites and the Enhancement of Human Brain Function. Adv Nutr. 2 (1): 32-50.
• DeFeudis FV, Papadopoulos V, Drieu K. (2003). Ginkgo biloba extracts and cancer: a research area in its infancy. Fundam Clin Pharmacol. 17:
• 405–17.
• Demiray S, Pintado ME, Castro MEL. (2009). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology. 3: 270-275.
• Devasagayam TP1, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. (2004). Free radicals and antioxidants in human health: current status
• and future prospects. J Assoc Physicians India. 52: 794-804.
• G. Phani Kumar and Farhath Khanum. (2012). Neuroprotective potential of phytochemicals. Pharmacogn Rev. 6(12): 81–90.
• Gilgun-Sherki Y, Rosenbuam Z, Melamed E, Offen D. (2002). Antioxidant therapy in acute central nervous injury: current state. Pharmacological Reviews. 54: 271–284.
• Gong X, Sucher NJ. (1999). Stroke therapy in traditional Chinese medicine (TCM): Prospects for drug discovery and development. Trends Pharmacol Sci. 20: 191–196.
• Halliwell B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Archives of biochemistry and biophysics. 476: 107–112.
• Jian-Ming Lu, un Peter H. Lin, Qizhi Yao, and Changyi Chen. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J Cell Mol Med. 14(4): 840–860.
• Justo R. Venereo Gutiérrez. (2002). Daño oxidativo, radicales libres y antioxidantes. Rev Cub Med Mil v.31 n.2 Ciudad de La Habana abr.-jun.
• Khalid Rahman. (Jun 2007). Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 2(2): 219–236.
• Kondo T, Reaume AG, Huang TT, et al. (1997). Reduction of Zn-superoxide dismutase activity exacerbates neuronal cell injury and oedema formation after transient focal cerebral ischemia. The Journal of Neuroscience. 17: 4180–4189.
• Lo EH. (2010). Degeneration and repair in central nervous system disease. Nat Med. 16: 1205–1209.
• Londoño AC, Arango-Dávila CA, (2011). Efecto neuroprotector de la fluoxetina en un modelo experimental de isquemia cerebral en ratones. Rev Medica Sanitas. 14 (4): 30-38.
• Lotito SB, Frei B. (2006). Consumption of flavonoid- rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic Biol Med. 41: 1727– 1746.
• Lü J-M, Yao Q, Chen C. (2009). Ginseng Compounds: An Update on Their Molecular Mechanisms and Medical Applications. Current Vascular Pharmacology. 7: 292– 302.
• McCord JM. (1985). Oxygen- derived free radicals in postischemic tissue injury. The New England Journal of Medicine. 312(3): 159–163.
• Muir K. (2000). Free radicals in stroke therapy: basic, preclinical and clinical directions. Brain. 123: 193–195.
• Newall CA, Anderson LA, Philpson JD. (1996). Herbal Medicine: A Guide for Healthcare Professionals. The Pharmaceutical Press; London:
• Oide T, Yoshida K, Kaneko K, Ohta M, Arima K. (2006). Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol. 32(2): 170-176.
• Pong K. (2003). Oxidative stress in neurodegenerative diseases: therapeutic implications for superoxide dismutase mimetics. Expert Opin
• Biol Ther. 3(1): 127-39.
• Rodríguez ML, Galvizu SR., Alvarez GE. (2002). Neuromodulación farmacológica en la enfermedad cerebrovascular. Temas actualizados. Rev. Cubana Med. 41(2).
• Seif-El-Nasr M, Mahran LG, El-Abhar HS, Khalifa AE, El-Denshary ESM. (1999). Possible neuroprotective effects of melatonin against ischaemia/reperfusion insult in rat brain. Medical Science Research. 27(9): 605–608.
• Seok Keun C, Gi-Ja L., Samjin C, Youn J, Hun-Kuk P., and Bong J. (2011). Neuroprotective effects by nimodipine treatment in the experimental global ischemic rat model: real time estimation of glutamate. J Korean Neurosurg Soc. 49(1): 1–7.
• Shaheen AA, Abd-El-Fattah AA, Seif-El-Nasr M. (1996). Influence of verapamil on the efficacy of vitamin E in preventing the ischaemia-reperfusion biochemical dearrangement in cerebral cortex of rats. Arzneimittel- Forsch. 46: 7670–7673.
• Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. (2006). Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor?. Atherosclerosis. 187(2): 238-50.
• Singh-Bora K and Sharma A. (2011). Evaluation of Antioxidant and Cerebroprotective Effect of Medicago sativa Linn. against Ischemia and Reperfusion Insult. Evid Based Complement Alternat Med. 2011: 792167.
• Streit WJ, Mrak RE and Griffin WS. (2004). Microglia and neuroinflammation: A pathological perspective. Journal of Neuroinflammation. 1, 14.
• Sunderman FW and Nomoto S. (1970). Measurement of Human Serum Ceruloplasmin by Its p-PhenylenediamineOxidaseActivity. Clinical Chemistry. 16(11): 903-910.
• Tamara R. Golden and Manisha Patel. (2009). Catalytic Antioxidants and Neurodegeneration. Antioxid Redox Signal. 11(3): 555–569.
• Wayne Briner. (2012). The Role of Metal Regulatory Proteins in Brain Oxidative Stress: A Tutorial. Oxid Med Cell Longev. 2012: 981561.
• Williamson G, Manach C. (2005). Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr. 81: 243S–255S.
• Zhang YB, Kan MY, Yanga ZH, Dingc WL, Yid J, Chena HZ, et al. (2009). Neuroprotective effects of N-stearoyltyrosine on transient global cerebral ischemia in gerbils. Brain Res. 1287: 55–64.
• Zhe-Min D, Bing W, Wei Qiao Z, Xiao-Jie L, Yu-Chang L, Yong-Jian G, and Yi-Feng M. (2012). Neuroprotective Effects of Ischemic Preconditioning and Postconditioning on Global Brain Ischemia in Rats through the Same Effect on Inhibition of Apoptosis. Int J Mol Sci. 13(5): 6089–6101.