11
Mathematical analysis and simulation in Matlab of dierential protection in two power transformers windings
INTERNAL FAILURE IN EACH OF THE PHASES
By activating any of this «push button» will allow us
to see the behavior of the relay in each of the phases as
shown in gure 12 (see Figure 12).
Here you can see the current values in the phase whe-
re the fault occurred, and also see the operating current
in the phase where it occurred.
e phase where the failure occurred will be shown
in red and in turn it will proceed to block any load chan-
ge that could be made in the Slider as well as the «push
button» of the failures in the other phases, all this will be
blocked until do not press the reset button which will re-
turn the readings to normal and clear the fault as shown
in gure 13 (see Figure 13).
Aer reviewing the required results, we press the exit
button which will ask us for an exit conrmation and by
pressing «yes», the interface will be completely exited and
the previously entered data will be deleted (see Figures 14
y 15 and Table 2).
TESTS AND RESULTS
Star-star connection:
Test 1:
R1 = 100,6 ohms
R2 = 100 ohms
R3 = 99,8 ohms
iv. conclusion
e objective of this work was to show by means of the si-
mulation in Matlab the behavior of the dierential protec-
tion using the 587 relay, of the «Module for transformer
protection» which was analyzed to obtain the governing
equations, comparing values and the operation of the relay
both empty and loaded, the following was concluded:
A didactic modeling was carried out in Matlab where
dierent practices and simulations were performed, in or-
der to visualize and analyze the moment when the dieren-
tial protection acted for both internal and external failure
of a transformer, with the data obtained through the simu-
lations it can be conclude that the operating results of the
relay in the simulator are within the range of the trip, since
it works at close operating currents of the real relay.
When comparing the responses obtained when si-
mulating the system with the dierent types of connec-
tions of the single-phase transformers, the data obtained
were satisfactory, since it was possible to appreciate the
currents of the windings both on the primary side and
on the secondary side. It was able to appreciate the ope
-
rating current and restriction of the relay, which showed
an error rate of less than 5%.
For the different practices, the parameters were
modied in the 587 relay as: (connection type of
single-phase transformers and operating current Iop).
rough these practices it can be concluded that the load
varies in percentage form for the dierent types of con-
nection in the transformers.
e purpose of the 587 dierential relay is to pro-
tect the power transformer where the input current must
be equal to or similar to the output current, in which real
faults that normally occur in electrical power systems
could be simulated. reliability in the system and no da-
mage occurs.
e tests were performed on the board «Transfor-
mer protection module» which was demonstrated and
analyzed the fault that eventually occurs in two-winding
transformers, where the dierential relay is in charge of
protecting the transformer from an internal fault for this,
comparison tables were made to consider the settings in
the relay and to be reliably in the system.
references
[1] C37.91-2000, Guide for protective relay application to
power transformers.
[2] M. Sangrá, Protecciones en las instalaciones eléctricas: evolu-
ción y perspectivas, Barcelona: Marcombo.
[3] R. Mujal Rosas, Protección de sistemas eléctricos de potencia,
Barcelona: Ocina de Publicaciones Académicas Digi-
tales de , 2014.
[4] F. Barberán-Núñez y M. Suárez-Ordóñez, Diseño y cons-
trucción de módulo didáctico de protecciones de redes de
distribución en sistemas eléctricos de potencia (), te-
sis de ingeniería, Universidad Politécnica Salesiana-se-
de Guayaquil, 2016.
[5] V. M. Castillo y G. I. Ospina, «Análisis de los modelos de
transformadores para la simulación de protección dife-
rencial», Instituto de Energía Eléctrica, Universidad Na-
cional de San Juan, San Juan, Argentina, 2010.
[6] J. Morón, Sistemas eléctricos de distribución, Barcelona: Edi-
ciones Reverte, 2009.
[7] A. A. Naranjo-Yépez, M. A. Feraud-López y R. J. Villa-
crés-Salazar, Diseño y construcción de un módulo para
protección diferencial de transformadores, tesis ingenie-
ría, Universidad Politécnica Salesiana, sede Guayaquil,
Ecuador, 2015.
[8] P. Concha, «patricioconcha.ubb» [En línea]. Available:
http://patricioconcha.ubb.cl/410113/accionamientos/
razon%2016.jpg. [Último acceso: 4 diciembre 2016].
[9] O. Enrique Ras, Transformadores de potencia de medida y de
protección, Barcelona: Marcombo Boixareu Editores, 1994.
[10] S. Ramírez, «Protección de sistemas eléctricos», Maniza-
les: Universidad de Manizales, 2003.
[11] S. Laboratories, Manual de instrucciones Sel 587-0, -1, :
Hopkins Court., 2004.
[12] G. Valderrama, Protección y coordinación de sistemas de
distribución, Sevilla: Publicaciones Litosa, 2000.
[13] J. Briones y R. López, Análisis y modelación matemática de
paralelismo de banco trifásico de transformadores con co-
nexión delta estrella de diferentes grupos vectoriales, tesis,
Universidad Politécnica Salesiana, sede Guayaquil, 2014.
[14] M. Sangrá, Protección en las instalaciones eléctricas: evolu-
ción y perspectiva, Barcelona: Marcombo, 1999.