53
El micromódulo de adquisición de datos permite la captura
de datos a una escala de 1ms.
El error obtenido entre el valor teórico y el valor medido
de la resistencia y la inductancia de las barras y carga no
supera el 2%.
El cálculo de los valores teóricos se realizó utilizando
ecuaciones propuestas por otros investigadores, lo que
permitió el análisis con los valores prácticos obtenidos.
REFERENCIAS
[1] Cuevas Bravo David, “CALIDAD DE LA ENERGIA:
Disturbios Eléctricos.” 2011, Ciudad Universitaria,
2011. doi:
https://hdl.handle.net/20.500.14330/TES01000679406.
[2] A. N. Khan et al., “Ensuring reliable operation of
electricity grid by placement of facts devices for
developing countries,” Energies (Basel), vol. 14, no. 8,
pp. 1–21, 2021, doi: 10.3390/en14082283.
[3] K. Kritsanasuwan, U. Leeton, and T.
Kulworawanichpong, “Harmonic mitigation of AC
electric railway power feeding system by using single-
tuned passive filters,” Energy Reports, vol. 8, pp.
1116–1124, 2022, doi: 10.1016/j.egyr.2022.05.276.
[4] “Potential Evaluation of Distributed Energy Resources
with Affine Arithmetic,” 2019 IEEE PES Innovative
Smart Grid Technologies Asia, ISGT 2019, no. May
2019, pp. 4334–4339, 2019, doi: 10.1109/ISGT-
Asia.2019.8881198.
[5] A. S. Nair, S. Abhyankar, S. Peles, and P.
Ranganathan, “Computational and numerical analysis
of AC optimal power flow formulations on large-scale
power grids,” Electric Power Systems Research, vol.
202, no. June 2021, p. 107594, 2022, doi:
10.1016/j.epsr.2021.107594.
[6] Y. Tu et al., “Optimal Configuration of Battery Energy
Storage for AC/DC Hybrid System Based on Improved
Power Flow Exceeding Risk Index,” Electronics
(Basel), vol. 12, no. 14, p. 3169, 2023, doi:
10.3390/electronics12143169.
[7] A. G. Migisha, J. M. Ntayi, F. Buyinza, L. Senyonga, J.
Abaliwano, and M. S. Adaramola, “Review of Concepts
and Determinants of Grid Electricity Reliability,” 2023,
doi: 10.33.90.
[8] Y. Lin, J. Hu, T. Wang, and Z. Wang, “Impact
Mechanisms of Commutation Failure Caused by a
Sending-End AC Fault and Its Recovery Speed on
Transient Stability,” Electronics (Switzerland), vol. 12,
no. 16, 2023, doi: 10.3390/electronics12163439.
[9] F. Quinteros, D. Carrión, and M. Jaramillo, “Optimal
Power Systems Restoration Based on Energy Quality
and Stability Criteria,” Energies (Basel), vol. 15, no. 6,
2022, doi: 10.3390/en15062062.
[10] M. Uzair, M. Eskandari, L. Li, and J. Zhu, “Machine
Learning Based Protection Scheme for Low Voltage AC
Microgrids,” Energies (Basel), vol. 15, no. 24, pp. 1–19,
2022, doi: 10.3390/en15249397.
[11] M. Bayat, M. M. Koushki, A. A. Ghadimi, M. Tostado-
Véliz, and F. Jurado, “Comprehensive enhanced
Newton Raphson approach for power flow analysis in
droop-controlled islanded AC microgrids,”
International Journal of Electrical Power and Energy
Systems, vol. 143, no. July, 2022, doi:
10.1016/j.ijepes.2022.108493.
[12] L. F. Grisales-Noreña, J. C. Morales-Duran, S. Velez-
Garcia, O. D. Montoya, and W. Gil-González, “Power
flow methods used in AC distribution networks: An
analysis of convergence and processing times in radial
and meshed grid configurations,” Results in
Engineering, vol. 17, no. January, p. 100915, 2023, doi:
10.1016/j.rineng.2023.100915.
[13] R. Villafuerte, R. A. Villafuerte, J. Medina, and E.
Mejía, “Aplicación de un Método Iterativo de dos Pasos
para el Cálculo de Flujos de Potencia,” Informacion
Tecnologica, vol. 28, no. 1, pp. 189–198, 2017, doi:
10.4067/S0718-07642017000100019.
[14] CELEC EP, “Sistema de transmisión a 500 kV.”
[Online]. Available:
https://www.celec.gob.ec/transelectric/sistema-
de-transmision-a-500-kv/