Uso de la nanotecnología para el desarrollo de empaques alimenticios del sector pesquero
i- 1390-5562 | e- 2477-9121 | año 2021 | volumen 7 | número 2 | pp. 05-14
13
27. Pudza, MY, Abidin ZZ, Abdul-Rashid S, Yassin FM,
Noor ASM, Abdullah M. Synthesis and characterization
of uorescent carbon dots from tapioca. Chemistry Se-
lect. 2019, 4 (14): 4140-4146. https://doi.org/10.1002/
slct.201900836.
28. Fan H, Zhang M, Bhandari B, Yang C-hui. Food waste as
a carbon source in carbon quantum dots technology and
their applications in food safety detection; Elsevier Ltd.,
2020, vol. 95. https://doi.org/10.1016/j.tifs.2019.11.008.
29. Jelinek R. Carbon quantum dots. Synthesis, properties
and applicatons. 2017. https://doi.org/10.1007/978-3-
319-43911-2.
30. Sagbas S, Sahiner N. Carbon dots: preparation, proper-
ties, and application; Elsevier Ltd., 2018. https://doi.
org/10.1016/B978-0-08-102509-3.00022-5.
31. Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S. Shining Car-
bon Dots: Synthesis and biomedical and optoelectronic
applications. Nano Today, 2016,11(5):565-586. https://
doi.org/10.1016/j.nantod.2016.08.006.
32. Tejwan N, Saha SK, Das J. Multifaceted applications of
green carbon dots synthesized from renewable sources.
Adv. Colloid Interface Sci. 2020, 275, 102046. https://
doi.org/10.1016/j.cis.2019.102046.
33. Nadeem M, Naveed T, Rehman F, Xu Z. Determina-
tion of histamine in sh without derivatization by indi-
rect reverse phase- Method. Microchem. J. 2019,
144 (June 2018): 209-214. https://doi.org/10.1016/j.mi-
croc.2018.09.010.
34. Cui F, Ye Y, Ping J, Sun X. Carbon dots: current advances
in pathogenic bacteria monitoring and prospect appli-
cations. Biosens. Bioelectron. 2020, 156 (July 2019):
112085. https://doi.org/10.1016/j.bios.2020.112085.
35. Li H, Huang J, Song Y, Zhang M, Wang H, Lu F,
Huang H, Liu Y, Dai X, Gu Z, Yang Z, Zhou R, Kang
Z. Degradable carbon dots with broad-spectrum an-
tibacterial activity. Appl. Mater. Interfaces.
2018,10(32):26936-26946. https://doi.org/10.1021/ac-
sami.8b08832.
36. Jian, HJ, Wu RS, Lin TY, Li YJ, Lin HJ, Harroun SG, Lai
JY, Huang CC. Super-cationic carbon quantum dots syn-
thesized from spermidine as an eye drop formulation
for topical treatment of bacterial keratitis. Nano.
2017,11(7):6703-6716. https://doi.org/10.1021/acsna-
no.7b01023.
37. Das P, Ganguly S, Bose M, Mondal S, Choudhary S,
Gangopadhyay S, Das AK, Banerjee S, Das NC. Zinc
and nitrogen ornamented bluish white luminescent
carbon dots for engrossing bacteriostatic activity and
fenton based bio-sensor. Mater. Sci. Eng. C 2018,88(Au-
gust 2017): 115-129. https://doi.org/10.1016/j.
msec.2018.03.010.
38. Kuang W, Zhong Q, Ye X, Yan Y, Yang Y, Zhang J, Huang
L, Tan S, Shi Q. Antibacterial nanorods made of carbon
quantum dots-ZnO under visible light irradiation. J. Na-
nosci. Nanotechnol. 2019,19(7):3982-3990. https://doi.
org/10.1166/jnn.2019.16320.
39. Marković ZM, Kováčová M, Humpolíček P, Budimir
MD, Vajďák J, Kubát P, Mičušík M, Švajdlenková H,
Danko M, Capáková Z, Lehocký M, Todorović Marko-
vić BM, Špitalský Z. Antibacterial photodynamic activity
of carbon quantum dots/polydimethylsiloxane nano-
composites against Staphylococcus aureus, Escherichia
coli and Klebsiella pneumoniae. Photodiagnosis Pho-
todyn. er. 2019, 26 (April): 342-349. https://doi.or-
g/10.1016/j.pdpdt.2019.04.019.
40. Ghorbani M, Molaei R, Moradi M, Tajik H, Salimi F,
Kousheh SA, Koutamehr ME. Carbon dots-assisted
degradation of some common biogenic amines: an in
vitro study. Lwt 2021, 136(P1): 110320. https://doi.or-
g/10.1016/j.lwt.2020.110320.
41. Devi P, akur A, Bhardwaj SK, Saini S, Rajput P, Ku-
mar P. Metal ion sensing and light activated antimicro-
bial activity of Aloe-Vera derived carbon dots. J. Mater.
Sci. Mater. Electron. 2018,29(20):17254-17261. https://
doi.org/10.1007/s10854-018-9819-0.
42. Shahshahanipour M, Rezaei B, Ensa AA, Etemadifar Z.
An ancient plant for the synthesis of a novel carbon dot
and its applications as an antibacterial agent and probe
for sensing of an anti-cancer drug. Mater. Sci. Eng. C
2019, 98(January): 826-833. https://doi.org/10.1016/j.
msec.2019.01.041.
43. Asha Jhonsi M, Thulasi S. A novel fluorescent car-
bon dots derived from tamarind. Chem. Phys. Lett.
2016, 661, 179-184. https://doi.org/10.1016/j.cple-
tt.2016.08.081.
44. Jhonsi MA, Ananth DA, Nambirajan G, Sivasudha T,
Yamini R, Bera S, Kathiravan A. Antimicrobial activi-
ty, cytotoxicity and binding studies of carbon dots.
Spectrochim. Acta-Part A Mol. Biomol. Spectrosc.
2018, 196(2017): 295-302. https://doi.org/10.1016/j.
saa.2018.02.030.
45. Gagic M, Kociova S, Smerkova K, Michalkova H, Se-
tka M, Svec P, Pribyl J, Masilko J, Balkova R, Heger Z,
Richtera L, Adam V, Milosavljevic V. One-pot synthe-
sis of natural amine-modied biocompatible carbon
quantum dots with antibacterial activity. J. Colloid In
-
terface Sci. 2020, 580, 30-48. https://doi.org/10.1016/j.
jcis.2020.06.125.
46. Travlou NA, Giannakoudakis DA, Algarra M, Labe-
lla AM, Rodríguez-Castellón E, Bandosz TJ. S- and
N-doped carbon quantum dots: surface chemistry de-
pendent antibacterial activity. Carbon N. Y. 2018, 135,
104-111. https://doi.org/10.1016/j.carbon.2018.04.018.
47. Lakshmanan A, Surendran P, Manivannan N, Sathish
M, Balalakshmi C, Suganthy N, Rameshkumar P, Ka-
viyarasu K, Ramalingam G. Supercial preparation of
biocompatible carbon quantum dots for antimicrobial
applications. Mater. Today Proc. 2019, 36 (xxxx): 171-
174. https://doi.org/10.1016/j.matpr.2020.02.694.
48. Otis G, Bhattacharya S, Malka O, Kolusheva S, Bolel P,