Artículo original
Generation of soil maps permeability. Case study in two cantons of Loja province, Ecuador
Generación de mapas de permeabilidad de suelos. Estudio de caso en dos cantones de la provincia de Loja, Ecuador
Generation of soil maps permeability. Case study in two cantons of Loja province, Ecuador
Siembra, vol. 10, núm. 1, e4321, 2023
Universidad Central del Ecuador
Recepción: 18 Enero 2023
Revisado: 22 Febrero 2023
Corregido: 17 Abril 2023
Aprobación: 08 Mayo 2023
Abstract: The generation of permeability maps is based on the analysis and interpretation of geology, environmental morphology, land use, and slope, which enables the selection of sampling areas with similar characteristics. The method represents the integration of the physical characteristics of the study area and then determines the infiltration capacity differences in the most representative geopedologic units. In determining the basic data, minidisc infiltrometers were used to perform seventy-two infiltration tests in different types of soils with varying organic matter content, texture, soil structure, and vegetation cover, which showed the spatial variability that exists in two cantons of Loja province, Ecuador. In addition, it was observed that the infiltration rate depended mainly on the content of the organic matter in the soil and is consistent with information collected on permeability worldwide. In this study, generated pedotransfer function (FTP) coefficient of determination R. 0.78, the determination of the coefficient indicates a satisfactory estimate of the permeability with the variables that were analyzed; in addition, the methodology for assessing the permeability was suitable for the conditions of this investigation. For this reason, the method described here should be tested in other areas of the country with a greater number of field trials and with more variable contents of organic matter and soil textural classes.
Keywords: pedotransfer, GIS, soil mapping, soil physical properties, permeability.
Resumen: La generación de mapas de permeabilidad se basa en el análisis e interpretación de la geología, la morfología ambiental, el uso del suelo y la pendiente, lo que permite seleccionar áreas de muestreo con características similares. El método representa la integración de las características físicas del área de estudio y luego determina las diferencias de capacidad de infiltración en las unidades geopedológicas más representativas. En la determinación de los datos básicos se utilizaron infiltrómetros minidisco para realizar setenta y dos pruebas de infiltración en diferentes tipos de suelos con diferente contenido de materia orgánica, textura, estructura del suelo y cobertura vegetal, lo que permitió evidenciar la variabilidad espacial que existe en dos cantones de la provincia de Loja, Ecuador. Además, se observó que la tasa de infiltración dependía principalmente del contenido de materia orgánica en el suelo y es consistente con la información recopilada sobre permeabilidad a nivel mundial. En este estudio se generó el coeficiente de determinación de la función de pedotransferencia (FTP) R2 0.78, la determinación del coeficiente indica una estimación satisfactoria de la permeabilidad con las variables que se analizaron; además, la metodología para evaluar la permeabilidad fue adecuada para las condiciones de esta investigación. Por esta razón, el método aquí descrito debería ser probado en otras zonas del país con un mayor número de ensayos de campo y con contenidos más variables de materia orgánica y clases texturales del suelo.
Palabras clave: pedotransferencia, SIG, cartografía de suelo, propiedades físicas del suelo, permeabilidad.
1. Introduction
Infiltration is a complex, highly variable process that directly depends on the physical-chemical characteristics of soil (Bens et al., 2006; Bosch & West, 1998; Byers & Stephens, 1983; Espinosa & Rivera, 2016; Kirkham, 2005; Lal & Taylor, 1970; Moglen et al., 2022; Monsalve, 2006; Shukla et al., 2003). Its variability is related to differences in soil texture, slope, climate, vegetation, and farming practices (Bouyoucus, 1927; Salton & Mielniczuck, 1995). Infiltration has a fundamental role in the transport processes of water and contaminants, such as groundwater recharge and pollutant transport. Therefore, improving knowledge of the dynamics of water movement and solute flow in the soil allows better water management at both the farm and watershed scale (Bouyoucus, 1927; Casanova et al., 2003; Hincapié Gómez & Tobón Marín, 2012; Varni et al., 2005).
Infiltration refers to the maximum water entering into the soil profile. It differs from the percolation process because the latter is the downward movement of water from or through the unsaturated zone (Monsalve, 2006). The initial infiltration rate depends on the soil's antecedent moisture content before the water's introduction. When the infiltration rate reaches a plateau, it is equivalent to the saturated hydraulic conductivity. Thus, the hydraulic conductivity represents the degree of ease with which water passes through soil (Ankeny, 1992; Ankeny et al., 1991, 1998; Babalola 1978). On the other hand, permeability is the infiltration rate per unit gradient of the hydraulic head. Hence, infiltration rate, hydraulic conductivity, and permeability are closely related concepts, but permeability depends on the boundary conditions and mainly on the size and distribution of soil grains and the antecedent soil water content (Guatibonza et al. 2009; Monsalve, 2006).
The proper knowledge of these parameters – both temporally and spatially – allows the planning and designing of water systems. For instance, a correct estimation of infiltration rates allows the design of irrigation systems that apply the right amount of water, thus, avoiding agronomic issues, saving energy, and avoiding erosion problems (Tornés Oliveras et al., 2013)
The infiltration process can be described quantitatively by solving the complete transport equation43 or by considering a relationship between cumulative infiltration and time, expressed in terms of parameters with a physical or empirical base (Haverkamp et al., 1990). Several field instruments exist to estimate the infiltration rate (Angulo-Jaramillo et al. 2000; Reynolds et al., 2002), but the disc infiltrometer is the main tool that helps in gathering information in the field and results in a considerable cost reduction (Sivapalan & Wood, 1986).
Most field instruments give information about the conductivity or infiltration rates referred to the point level. Consequently, it becomes difficult to determine the spatial variation of these parameters. Moreover, the variability of an area is influenced by factors such as vegetation cover, the presence of macropores, or systems of cracks on a small scale. This has a special influence on the determination of soil permeability, the infiltration rate per unit of land and its spatial variability (Williams et al., 1992).
In Ecuador, there is not a methodology to incorporate the criteria of soil texture, vegetation coverage, slope, and geomorphology, among others, into the permeability measure of the soil. The method commonly used is the infiltrometer cylinder, which requires large amounts of water and this hampers their use in slope conditions and difficult-to-access sampling points; thus, a low-cost method for quickly gathering information with little water consumption is a priority for use in the topographical conditions where this study was conducted.
Given the importance of permeability in the management of natural resources - especially land change- the main goal of this study is to analyze the variability of soil permeability within Loja Province using field infiltration tests. The specific objectives were (1) to analyze the influence of the bulk density, the soil organic matter, the permanent wilting point, and the field capacity on the spatial variation of the soil permeability, (2) to estimate the unsaturated hydraulic conductivity at sampling points based on infiltration rate data (3) to estimate the unsaturated hydraulic conductivity at sampling points based on pedotransfer functions in areas with similar geological, and morphological characteristics, and (4) to generate thematic maps of soil permeability.
The scope of this study is to establish a methodology for obtaining basic information that assists in the generation of soil permeability maps as an effective tool for territorial planning and irrigation system design (Meijerink, 1988; Zinck, 1988).
2. Materials & Methods
2.1. Thematic mapping
Thematic mapping is a technique that generates information on landforms, geomorphic processes, structure, composition and dynamics of soil and water, as well as information about soil, climate, slope, geomorphology, and land use (Carlón Allende & Mendoza, 2007; Meijerink, 1988; Zinck, 1988). Our approach integrates knowledge and data of morphology and slopes to identify areas of similar characteristics, with soils that are suitable for irrigation and susceptible to erosion (Carlón Allende & Mendoza, 2007; Zinck, 1988).
2.2. Selection and definition of variables
For infiltration mapping, the following layers were used (Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN], 2010a, 2010b, 2010c, 2010d, 2010e), geology, morphology, and slope. To our knowledge, no systematic empirical research exists in Ecuador relating to the interactions between landscape morphology, the characteristics of rainfall, land use, surface properties, and their relation to water flow in soil. Additionally, the spatial variability of the land use is typically not integrated into the study because the area analyzed is an agricultural zone with a high rotation of crops.
Geological Units (Figure 1A) define landforms that share composition and structure (Winckell et al. 1991, 1997, 2000). The presence of Quaternary deposits and water infiltration increases the surface impact generated by the phenomena of washing and erosion; depending on the mobility of water transport in the territory, these phenomena can favor chemical weathering processes, increase vegetation activity or set a constant dynamic of erosion that can change the appearance of the terrain (Rodríguez Vidal, 1987).
Morphological Units (Figure 1B) detail landforms by describing soil horizons in terms of shape, composition, structure, organization, and color. These unique units refer to homogenous areas. Slope (Figure 1C) refers to the steepness with respect to the horizontal expressed as a percentage. This factor influences the movement of surface water, determining the effective contact time between water and soil. The classification of this parameter is important to determine land use, the magnitude of infiltration, and the surface and subsurface runoff (Gavin & Xue, 2008; Hincapié Gómez & Tobón Marín, 2012; Miyazaki, 1993; Philip, 1991). Despite its importance, there is little information regarding the effect of slope on water dynamics and soil hydraulic properties, and this information is even scarcer for Andisols.
2.3. Study Area
The study area is located in the southern part of Ecuador (Figure 2A), Loja Province. The height ranges from 800 to 1,700 meters above sea level, with an area of 76,000 hectares. The average rainfall is in the range of 250 - 1750 mm yr-1 (Figure 2B), the average temperature range is 11 - 23 degrees Celsius (Figure 2C). The soil and weather conditions favor livestock and agricultural production, which are 80 % and 15 % of the total production in the province respectively (Instituto Nacional de Estadística y Censos [INEC], 2000). The agriculture sector uses low-tech systems, and the main crops are sugar cane, tomatoes, peppers, and corn. There is no planning of natural resources in the province for production purposes.
2.4. Collection of information and field work
The process of identifying sampling sites was performed by characterizing known environmental units as homogeneous units. The identified areas provide relevant information in the study area because they integrate the information of morphology, geomorphology, and slope to locate spatial units of interest. The information generated about permeability is added through pedotransfer functions to be evaluated in response to the proposed classification of permeability (Table 1), with the specific goal of generating the theme map. At the same time, the permeability of the soils provides the basis for territorial planning of the irrigation areas in terms of land use and exploitation.
Class | Designation | Rank (mm h-1) |
1 | Very fast | > 250 |
2 | Fast | 150 - 250 |
3 | Moderately fast | 65- 150 |
4 | Moderate | 20 - 65 |
5 | Moderately slow | 5 - 20 |
6 | Slow | 1.5 - 5 |
7 | Very slow | < 1.5 |
We collected infiltration information by using a minidisc portable tension infiltrometer, The minidisk allows the quantitative identification of the relative contribution of the key hydrodynamic parameters that depend on the flow of infiltrated water and pressure during the water application, which is the unsaturated hydraulic conductivity (Angulo-Jaramillo et al., 2000; Aoki & Sereno, 2005; Wilson & Luxmoore, 1988). The infiltrometer is fixed to the ground with a ring to create tension between the soil and the water in the tank so that measurements can be performed based on the time elapsed to infiltrate all water contained in the tank, The potential is controlled by a cylinder bubbler connected to the reservoir (Ruiz Sinoga et al. 2003).
The main advantages of use of the infiltrometer (Romero Díaz et al., 2010) are that (1) it allows a large number of measurements in less time because it reaches the stable rate of infiltration faster; (2) it has easy-to-use instrumentation; (3) there is no need to calibrate the tension, the method accepts the textural parameters of the Van Genuchten floor; thus, it is necessary to have previously analyzed the texture and set it to the 12 classes (Babalola, 1978; Bosch & West, 1998); (4) the infiltrometers can be easily transported due to their small size and low water requirements; and (5) they do not need much smooth surface in the field because the diameter of the cylinder is small. This is a very important advantage on hillsides or where the slope is high, approximately 20 %. Fieldwork using the minidisc has been successfully carried out by Zhang (Aoki & Sereno, 2005; Ruiz Sinoga et al., 2003; Zhang, 1997; Zhang et al., 1999).
The 77 sampling points were georeferenced by GPS measurements (Juno 5B, Trimble. Precision 2 m). Samples were taken from different sites to capture the variability of the slope, geology, morphology, and soil coverage. The extent of the area, the ease of access, and the spatial density influenced the sample number. Additionally, we sampled soil at a 30 cm depth using a Kopecky cylinder to determine gravimetric moisture, porosity, void ratio, and bulk density (Guatibonza et al., 2009). The textural class was based on the Bouyoucos method (Bouyoucus, 1927; Ritseman et al., 1996) and organic matter was determined by the Walkley and Black method (Nelson & Sommers, 2018; Walkley & Black, 1934; Walkley, 1947).
The methodology used for this study was chosen to define the effects of water in the soil; the data obtained on the permeability were subsequently evaluated with the model proposed by Zhang in 1997 (Ruiz Sinoga et al., 2003). The resulting values were reclassified to a scale applied in land use capacity for agriculture irrigation (Cisneros, 2003), which allowed information to be simplified to known ranges.
To estimate hydraulic properties, such as hydraulic conductivity and water holding capacity, we used pedotransfer functions in the points where sampling for information about permeability could not be made; at these points, the hydraulic conductivity was not saturated by integrating the textural class (Rawls & Brakensiek, 1985; Vereecken et al., 1989; Zimmermann & Basile, 2007, 2008). Although these functions cannot replace direct measurements of some soil properties, they can improve the prediction of field data in areas that are difficult to access, i.e., to extend from the pedón level to broader map units (Casanova et al., 2003), whereby it was possible to predict the values of permeability to areas where no measurements are taken in situ.
2.5. Analysis of patterns
Differences in the infiltration data can be explained by the fact that Zhang's method applied to infiltration values and different textural parameters from Genuchten. To find similar textural characteristics, the conductivity values must be similar, so the method exerts direct influence on the hydrodynamic behavior of the soil; in addition, other physical factors influence this methodology (Romero Díaz et al., 2010; Ruiz Sinoga et al., 2003), to evaluate pedotransfer functions. Therefore, the data obtained from the infiltration tests results are the associated texture (% clay, % sand, % silt) and organic matter of the physical analysis for each soil sampling point because the data have similar values and the soils tend to have conductivity (Reynolds et al., 2002).
3. Results
According to the pedotransfer function [equation 1*] for permeability with a goodness of fit R. = 0.78, permeability values could be estimated for the different areas where permeability information cannot be obtained. The percentage of organic matter constitutes the most significant independent variable (. < 0.05), which is consistent with several studies mentioning the effects of organic matter on the behavior of hydraulic conductivity (Casanova et al., 2003; Genuchten, 1980). These studies concluded that there is an intimate relationship between this parameter and increased permeability.
The locations of the field tests are shown in Figure 2A, while Figure 3 shows the map with the reclassified data according to Table 1. The values of the magnitude of the soil parameters are similar to Aoki and Sereno (2005) and White and Sully (1987), who worked with pressure 1 cm in a loam soil, obtaining values of hydraulic conductivity (Ko) of 12.6 m h-1). Smettem et al. (1994), estimated a Ko of 56 mm h-1 using a sandy loam soil, with a water application pressure of 2 cm.
Following the classification rules (CLIRSEN, 2010a), areas with permeability values above 180 mm h-1 (fast drainage, low water holding capacity) or below 3.6 mm h-1 (low drainage capacity) are not suitable for irrigation systems (8.3 %, 11,065 ha). Figure 4 shows that the study areas of Class 4 (moderate) and Class 5 (moderately slow) soils predominate. Both classes present the irrigation potential, with an organic matter content in the range of 2 - 6 % and textures of loam clay, silty and clay, loam silt clay; these classes present good opportunities for irrigation. The infiltration rate is mainly affected by the amount of organic matter as it shows strong spatial correlation (Rawls & Brakensiek, 1985; Williams et al., 1992; Zimmermann & Basile, 2008).
4. Discussion
From the methodological point of view, we note that the method can obtain satisfactory results that can be adjusted to other methods; moreover, easy handling and the speed of obtaining reliable data given the small area of hydraulic contact with soil, together with the ability to reproduce in situ various experiments and intensify sampling areas, are favorable circumstances for the implementation of this methodology (Romero Díaz et al., 2010; Ruiz Sinoga et al., 2003) (Figure 5).
Note also that the results obtained in this paper with the application of the pedotransfer function methodology improve the prognosis of the soil hydraulic parameters, (Figure 5), which is mainly due to the inclusion of additional variables, such as bulk density, particle size composition (Zimmermann & Basile, 2007, 2008).
The concept of environmental units allowed the integration of sectorial reporting of climate, geology, slope, geomorphology, and vegetation to detect areas homogeneous both in their physical characteristics and behavior with internal consistency.
The integrative use of fieldwork and pedotransfer functions provides a “smoother reality” (Paz González et al., 2001), and it allows the definition or extraction of relevant information for soil use and management.
5. Conclusions
The multiple linear regression equations acceptably estimated the permeability values from a minimum of information available from the soil mapping (Li et al., 2019).
The generated permeability map and the proposed methodology provide a clear conception of system variability in the structure of soil properties. It was possible to demonstrate the usefulness of incorporating environmental physical heterogeneity into the theoretical models referenced by graphical representation, which also served to analyze the uncertainty of the obtained results by simulation (Comegna & Vitale, 1993; Rawls et al., 1983).
Contributor Roles
Jorge Andrés Espinosa Marín: conceptualization, investigation, methodology, resources.
Diego Rivera: validation, formal analysis, writing – review & editing.
Renato Haro Prado: visualization.
Ethical Issues
Ethics approval Not applicable.
Conflict of Interest
The authors declare that they have no affiliation with any organization with a direct or indirect financial interest that could have appeared to influence the work reported.
References
Angulo-Jaramillo, R., Vandervaere, J. P., Roulier, S., Thony, J. L., Gaudet, J. P., & Vauclin, M. (2000). Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research, 55(1-2), 1-29. https://doi.org/10.1016/S0167-1987(00)00098-2
Ankeny, M. D. (1992). Methods and theory for unconfined infiltration measurements. In G. Clarke Topp, W. D. Reynolds, & R. E. Green (ed.), Advances in measurement of soil Physical properties: Bringing Theory into Practice (pp. 123-141). SSSA Special Publications. Soil Science Society of America, Inc. https://doi.org/10.2136/sssaspecpub30.c7
Ankeny, M. D., Ahmed, M., Kaspar, T. C., & Horton, R. (1991). Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55(2), 467-470. https://doi.org/10.2136/SSSAJ1991.03615995005500020028X
Ankeny, M. D., Kaspar, T. C., & Horton, R. (1988). Design for an automated tension infiltrometer. Soil Science Society of America Journal, 52(3), 893-896. https://doi.org/10.2136/SSSAJ1988.03615995005200030054X
Aoki, A. M., & Sereno, R. (2005). Comparación de metodologías de cálculo de propiedades hidráulicas de un suelo a partir de datos medidos con infiltrómetro de disco. Agricultura Técnica, 65(2), 204-209. https://doi.org/10.4067/S0365-28072005000200010
Babalola, O. (1978). Spatial variability of soil water properties in tropical soils of Nigeria. Soil Science, 126(5), 269-279. https://doi.org/10.1097/00010694-197811000-00003
Bens, O., Buczko, U., Sieber, S., & Hüttl, R. F. (2006). Spatial variability of O layer thickness and humus forms under different pine beech–forest transformation stages in NE Germany. Journal of Plant Nutrition and Soil Science, 169(1), 5-15. https://doi.org/10.1002/JPLN.200521734
Bosch, D. D., & West, L. T. (1998). Hydraulic Conductivity Variability for Two Sandy Soils. Soil Science Society of America Journal, 62(1), 90-98. https://doi.org/10.2136/SSSAJ1998.03615995006200010012X
Bouyoucus, G. J. (1927). The hydrometer as new method for the mechanical analyses of soil. Soil Science, 23, 343-353. http://dx.doi.org/10.1097/00010694-192705000-00002
Byers, E., & Stephens, D. B. (1983). Statistical and stochastic analyses of hydraulic conductivity and particle-size in a fluvial sand. Soil Science Society of America Journal, 47(6), 1072-1081. https://doi.org/10.2136/SSSAJ1983.03615995004700060003X
Carlón Allende, T., & Mendoza, M. (2007). Análisis hidrometeorológico de las estaciones de la cuenca del lago de Cuitzeo. Investigaciones Geograficas, (63), 56. https://doi.org/10.14350/rig.29910
Casanova, M., Seguel, O., & Joel, A. (2003). Funciones de pedotransferencia para conductividad hidráulica en laderas de secano. Revista de la Ciencia del Suelo y Nutrición Vegetal, 3(2), 42-48.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010a). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010b). Mapa escala 1:250.000, Carta de Geomorfología, Hoja de Gonzanamá. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010c). Mapa escala 1:250.000, Carta de Morfología, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010d). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Catamayo. Instituto Geográfico Militar.
Centro de Levantamientos Integrados de Recursos Naturales por Sensores Remotos [CLIRSEN]. (2010e). Mapa escala 1:250.000, Carta de Pendientes, Hoja de Gonzanamá. Instituto Geográfico Militar.
Cisneros, R. (2003). Apuntes de la materia Riego y Drenaje. Universidad Autónoma de San Luis de Potosí. http://www.ingenieria.uaslp.mx/Documents/Apuntes/Riego
Comegna, V., & Vitale, C. (1993). Space-time analysis of water status in a volcanic Vesuvian soil. Geoderma, 60(1-4), 135-158. https://doi.org/10.1016/0016-7061(93)90023-E
Espinosa, J., & Rivera, D. (2016). Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences, 75(16), 1-15. https://doi.org/10.1007/s12665-016-5962-1
Gavin, K., & Xue, J. (2008). A simple method to analyze infiltration into unsaturated soil slopes. Computers and Geotechnics, 35(2), 223-230. https://doi.org/10.1016/J.COMPGEO.2007.04.002
Genuchten, M. Th. van. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/SSSAJ1980.03615995004400050002X
Guatibonza, M., Álvarez-Herrera, J. G., & Sanabria, J. E. (2009). Distribución espacial de la conductividad hidráulica en un lote de la granja Tunguavita (Paipa, Colombia). Agronomía Colombiana, 27(2), 261-271. https://revistas.unal.edu.co/index.php/agrocol/article/view/11208
Haverkamp, R., Parlange, J. -Y., Starr, J. L., Schmitz, G., & Fuentes, C. (1990). Infiltration under ponded conditions: 3. A predictive equation based on physical parameters. Soil Science, 149(5), 292-300. https://doi.org/10.1097/00010694-199005000-00006
Hincapié Gómez, E., & Tobón Marín, C. (2012). Dinámica del agua en andisoles bajo condiciones de ladera. Revista Facultad Nacional de Agronomía Medellín, 65(2). https://revistas.unal.edu.co/index.php/refame/article/view/36490
Instituto Nacional de Estadística y Censos [INEC]. (2000). Censo Nacional Agropecuario. INEC. https://www.ecuadorencifras.gob.ec/censo-nacional-agropecuario/
Kirkham, M. B. (2005). Principles of soil and plant water relations. Elsevier Academic Press. https://doi.org/10.1016/B978-0-12-409751-3.X5000-2
Lal, R., & Taylor, G. S. (1970). Drainage and nutrient effects in a field lysimeter study: II. Mineral uptake by corn. Soil Science Society of America Journal, 34(2), 245-248. https://doi.org/10.2136/SSSAJ1970.03615995003400020020X
Li, M., Liu, T., Duan, L., Luo, Y., Ma, L., Zhang, J., Zhou, Y., & Chen, Z. (2019). The scale effect of double-ring infiltration and soil infiltration zoning in a semi-arid steppe. Water, 11(7), 1457. https://doi.org/10.3390/W11071457
Meijerink, A. M. J. (1988). Data acquisition and data capture through terrain mapping units. ITC JournaL, 7, 23-44.
Miyazaki, T. (1993). Water flow in soils. Marcel Dekker.
Moglen, G. E., Asce, F., Sadeq, Hl, Hughes Ii, L. H., Meadows, M. E., Miller, J. J., Asce, M., Ramirez-Avila, J. J., & Tollner, E. W. (2022). NRCS curve number method: comparison of methods for estimating the curve number from rainfall-runoff data. Journal of Hydrologic Engineering, 27(10), 04022023. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002210
Monsalve, G. (2006). Hidrología en la ingeniería (2nd ed.). Escuela Colombiana de Ingeniería.
Nelson, D. W., & Sommers, L. E. (2018). Total Carbon, Organic Carbon, and Organic Matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (eds.), Methods of Soil Analysis, Part 3: Chemical Methods (pp. 961-1010). SSSA Book Series. Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.3.c34
Paz González, A., Thonon, I., Bertolani, F. C., Taboada Castro, M. M., Vidal-Vázquez, E., & Dafonte Dafonte, J. (2001). Variabilidad espacial de la infiltración en una ladera determinada con permeámetro de Guelph e infiltrómetro de tensión. En J. J. López Rodríguez, & M. Quemada (eds.), Temas de investigación en zona no saturada: actas de las V Jornadas sobre Investigación en la Zona no Saturada. Universidad Pública de Navarra = Nafarroako Unibertsitate Publikoa, Servicio de Publicaciones. https://abe.ufl.edu/faculty/carpena/files/pdf/zona_no_saturada/temas_de_investigacion_v5/12.pdf
Philip, J. R. (1991). Infiltration and downslope unsaturated flows in concave and convex topographies. Water Resources Research, 27(6), 1041-1048. https://doi.org/10.1029/91WR00129
Rawls, W. J., & Brakensiek, D. L. (1985). Prediction of soil water properties for hydrologic modeling. In E. B. Jones, & T. J. Ward (eds.) Watershed Management in the Eighties. Proc. of Symp. sponsored by Comm. on Watershed Management (pp. 293-299). ASCE. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0044472
Rawls, W. J., Brakensiek, D. L., & Miller, N. (1983). Greenampt Infiltration parameters from soils data. Journal of Hydraulic Engineering, 109(1), 62-70. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(62)
Reynolds, W. D., Elrick, D. E., Youngs, E. G., Amoozegar, A., Booltink, H. W. G., & Bouma, J. (2002): Saturated and field-saturated water flow parameters. In J. H. Dane, & G. C. Topp (eds.), Methods of Soil Analysis, Part 4—Physical Methods (pp. 797-878). SSSA Book Series No. 5. Soil Science Society of America.
Ritsema, C. J., Oostindie, K., & Stolte, J. (1996). Evaluation of vertical and lateral flow through agricultural loessial hillslopes using a two-dimensional computer simulation model. Hydrological Processes, 10(8), 1091-1105. https://doi.org/10.1002/(SICI)1099-1085(199608)10:8<1091::AID-HYP414>3.0.CO;2-J
Rodríguez Vidal, J. (1987). Aportación de la geomorfología aplicada a la ordenación del territorio y el medio ambiente en el occidente andaluz. Revista de Estudios Andaluces, (9), 41-54. https://doi.org/10.12795/rea.1987.i09.02
Romero Díaz, A., Quiñonero Rubio, J. M., López Martínez, M., & Ruiz Sinoga, J. D. (2010). Aplicación de técnicas SIG en el estudio de evaluación de degradación de suelos. Mazarrón (Murcia). In J. Ojeda, M. F. Pita, & I. Vallejo (eds.), Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos (pp. 1074-1089). Secretariado de Publicaciones de la Universidad de Sevilla. http://hdl.handle.net/11441/66694
Ruiz Sinoga, J. D., Lucas Santamaría, B., Romero Lopera, A., Noguera Robles, M. J., Gallegos Reina, A., Márquez Carrero, J. & Martínez Murillo, J. F. (2003). Determinación de la conductividad hidráulica en laderas mediante el uso de infiltrómetros de minidisco a lo largo de un gradiente pluviométrico mediterráneo. In J. Álvarez Benedí, & P. Marinero Díez (coord.), Estudios de la zona no saturada del suelo (pp. 143-152). Instituto Tecnológico Agrario de Castilla y León. https://dialnet.unirioja.es/servlet/articulo?codigo=4786431
Salton, J. C., & Mielniczuck, J. (1995). Relaciones entre sistemas de preparo, temperatura e umidade de um Podzólico Vermelho-Escuro de Eldorado do Sul (RS). Revista Brasileira de Ciência Do Solo, 19, 313-319.
Shukla, M. K., Lal, R., & Ebinger, M. (2003). Tillage effects on physical and hydrological properties of a typic argiaquoll in central Ohio. Soil Science, 168(11), 802-811. https://doi.org/10.1097/01.SS.0000100470.96182.4A
Sivapalan, M., & Wood, E. F. (1986). Spatial heterogeneity and scale in the infiltration response of catchments. In: V. K. Gupta, I. Rodríguez-Iturbe, & E. F. Wood, (eds.), Scale Problems in Hydrology. Water Science and Technology Library, vol 6. Springer. https://doi.org/10.1007/978-94-009-4678-1_5
Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three-dimensional analysis of infiltration from the disc infiltrometer: 1. A capillary-based theory. Water Resources Research, 30(11), 2925-2929. https://doi.org/10.1029/94WR01787
Tornés Oliveras, N., Gómez Masjuán, Y., & Boicet Fabre, T. (2013). Evaluación de la calidad del riego de la máquina con enrollador modelo IRROMOTOR. Revista Ciencias Técnicas Agropecuarias, 22(1), 39-44. https://rcta.unah.edu.cu/index.php/rcta/article/view/190
Varni, M., Gandini, M., Estraigas, I., & Vázquez, P. (2005). Propuesta y comparación de metodologías para la determinación y mapeo de áreas anegadas mediante el uso de imágenes Landsat. En Actas del XX Congreso Nacional del Agua CONAGUA. Mendoza.
Vereecken, H., Maes, J., Feyen, J., & Darius, P. (1989). Estimating the soil moisture retention characteristics from texture, bulk density, and carbon content. Soil Science, 148(6), 389-403. https://doi.org/10.1097/00010694-198912000-00001
Walkley, A. & Black, I. A. (1934). An examination of the degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. http://dx.doi.org/10.1097/00010694-194704000-00001
White, I., & Sully, M. J. (1987). Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resources Research, 23(8), 1514-1522. https://doi.org/10.1029/WR023I008P01514
Williams, R. D., Ahuja, L.R., & Naney, J. W. (1992). Comparison of methods to estimate soil water characteristics from limited texture, bulk density, and limited data. Soil Science, 153(3), 172-184. http://dx.doi.org/10.1097/00010694-199203000-00002
Wilson, G. V., & Luxmoore, R. J. (1988). Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds. Soil Science Society of America Journal, 52(2), 329-335. https://doi.org/10.2136/SSSAJ1988.03615995005200020005X
Winckell, A., Marocco, R., Winter, T., Huttel, C., Pourrut, P., Zebrowski, C. & Sourdat, M. (1997). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 1 – Las condiciones generales del medio natural. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/doc34-07/010022380.pdf
Winckell, A., Zebrowski, C. & Sourdat, M. (2000). Los Paisajes naturales del Ecuador: Tomo IV – Geografía Física, Volumen 2 – Las regiones y paisajes del Ecuador. Serie Geografía Básica del Ecuador. Centro Ecuatoriano de Investigación Geográfica. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-03/010011845.pdf
Winckell, A., Zebrowski, C., & Delaune, M. (1991). Evolution du modèle quaternaire et des formations superficielles dans les Andes de l’Equateur : 2. Quelques aspects de l’histoire paléogéographique quaternaire. Géodynamique, 6(2), 119-139. https://www.documentation.ird.fr/hor/fdi:010011259
Zhang, R. (1997). Infiltration models for the disk infiltrometer. Soil Science Society of America Journal, 61(6), 1597-1603. https://doi.org/10.2136/SSSAJ1997.03615995006100060008X
Zhang, Y., Butters, G. L., Cardon, G. E., & Smith, R. E. (1999). Analysis and testing of a concentric-disk tension infiltrometer. Soil Science Society of America Journal, 63(3), 544-553. https://doi.org/10.2136/SSSAJ1999.03615995006300030017X
Zimmermann, E. D., & Basile, P. A. (2007). Funciones hidráulicas de suelos limosos: regresiones no lineales con propiedades físicas y granulométricas. En XXI Congreso Nacional del Agua. https://www.fceia.unr.edu.ar/curiham/es/wp-content/uploads/2018/11/con10-CNA071.pdf
Zimmermann, E. D., & Basile, P. A. (2008). Uso de funciones de pedotransferencia para la estimación de parámetros hidráulicos en suelos limosos (Llanura Argentina). Boletín Geológico y Minero, 119(1), 71-80. https://www.igme.es/boletin/2008/119_1_2008/ARTICULO%206.pdf
Zinck, J. A. (1988). Physiography and Soils. ITC Lecture Note SOL. 4.1. International Institute for Geoinformation Science and Earth Observation (ITC). https://webapps.itc.utwente.nl/librarywww/papers_1989/tech/zinck_phy.pdf
Notes
Información adicional
e-location: e4321