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TEORIA VECTORIAL

La teoría de vectores ha tomado en estos últimos tiem­
pos una importancia correspondiente a las ventajosas aplica­
ciones de que es susceptible.

Tratada como ciencia especial, va desarrollándose a me­
dida que se extiende el análisis puro de sus propiedades.

La Mecánica, la Grafoestátíca como parte de ésta, la 
Electricidad en sus problemas de corrientes alternas, la T r i ­
gonometría en la deducción de sus principios emplean los 
vectores y los conceptos vectoriales.

Para que nuestros estudiantes puedan adquirir una vi­
sión de conjunto, he querido condensar en este estudio, la 
síntesis práctica de la Teoría Vectorial.



TEORIA VECTORIAL

La teoría vectorial reposa en la idea del movimiento: el 
movimiento de un punto que engendra una linca.

Supongamos un punto A que 
se mueve y sea B su situación 

’ posterior en el espacio: para ve­
nir de A a B, considerando las 
diferentes posiciones sucesivas, 
c inmediatamente relacionadas 

con la anterior, estas diferentes posiciones habrán engendra­
do la linea AB>

Para ir desde A h asta B el punto puede engendrar las
lincas AMB, ANB y A T B , siendo esta última una linca 
recta, o sea, el camino más corto entre A y B. Es este ca­
mino más corto o sea la línea recta AB la que recorre un
punto móvil, para engendrar un vector AB. Las lincas 
AMB, ANB y la recta AB, son las trayectorias del punto.
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Sí se prolonga de lado y lado la recta AB, se obtiene 
la recta X X '  de longitud indefinida que constituye la direc­
ción del vector. Sobre la recta X X ',  un punto móvil puede
engendrar un vector yendo de X  hacía X '  (vector AB) o tam­
bién de X ' hacia X (vector BA); hay, por tanto, dos sen­
tidos sobre una misma dirección: al uno lo llamamos positi­
vo, el contrarío será negativo.

Considerando un mismo eje X X f o sea una dirección o 
soporte de vectores, y tomando en cuenta que el móvil va 
de A a B, es decir, recorre una distancia, la distancia o lon­
gitud recorrida puede diferenciar un vector de otro, por tanto, 
su comparación se hará mediante una unidad de longitud.

Y así vemos que para definir perfectamente un vector, 
se necesita tomar en cuenta todos aquellos elementos que lo 
personifican, es decir, que lo diferencian de los demás.

Un vector está, pues, definido por los cuatro elementos:
Io. Dirección. El eje X X '  que sirve de soporte.
2o. Punto de aplicación. El punto A de donde parte el

móvil para engendrar el vector AB.
3o. Sentido. El que lleve para ir de A hacía B: será 

positivo sí es el mismo que hemos convenido, así, en el eje 
respectivo (por ejemplo de X  hacía X ');  será negativo sí es 
el contrarío.

4o. Magnitud. Es la distancia, medida con la longitud 
unitaria, entre el origen o punto de aplicación A, y el punto 
B o extremidad del vector.

Para  indicar que se trata de un vector, se emplea la ano­
tación AB: A es el origen, B la extremidad y la barra 
completa la idea convencional del vector A B .

Representación de un vector

Un vector AB, se lo representa gráficamente por un tro- 
ico AB de línea recta, en el cual se encuentran los elementos 
necesarios para definirlo: A es el origen o punto de aplica-
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cíón; B la extremidad, indicada 
por la flecha; AB de longitud 
igual al número de unidades de 
su magnitud; dirección, la de la 
recta AB; sentido, el indicado 
por la flecha, de A (origen)

Suma de vectores

Los vectores comparados entre ellos deben ser:
Io. Vectores idénticos: aquellos que tienen un mismo

origen y una misma extremidad; tales como AB y CD.
2o. Equipolentes: los que tienen direcciones paralelas,

iguales sentidos y magnitudes; tales como E F  y GH.
3o. Par de vectores: se lla­

ma al grupo de vectores IJ y
KL cuyas direcciones son para­
lelas, sus magnitudes iguales y 
de sentidos contrarios.

K

Consideremos varios vectores 
P,, P._¡ y Pn  cuyos orígenes o

hacia B (extremidad).
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puntos de aplicación en el espacio son cualesquiera; si csco- 
jetnos uno especial A, transportemos el vector P, por medio
de un equipolente AB; partiendo de la extremidad B trans­
portemos el vector P„, por medio de un equipolente BC; des­
de la extremidad Cr transportemos en CD el vector Pn; por
convención, un vector AD cuyo origen coincide con el ori­
gen A del primer vector y cuya extremidad coincide con la 
extremidad D del último vector, se llama suma geométrica de 
los vectores considerados.

Fara  obtener _la suma geométrica de los vectores
Pj -f- P ,  -|- Pn =  R hemos colocadlo, partiendo del punto
A, vectores equipolentes P ,,  P.,. Pn, uno a continuación 
del otro, formando el contorno poligonal ABCD que toma el
nombre de polígono oe vectores, en el cual, el vector X 5  
representa la suma geométrica.

En la fíg. 8, podemos observar que la suma 
podíamos obtenerla construyendo el polígono AECD que equi­
vale a P.2 —)— P , -j- Pn, lo que prueba la propiedad conmuta­
tiva.

Así mismo, el polígono ABCD cuya construcción nos
da el vector AD (suma geométrica), puede ser sustituido por
el polígono ACD, es decir el equivalente a R, -f- Pn, en el
cual la suma parcial de P, y P., está reemplazada por R,; 
de lo cual se deduce:

Io. La propiedad asociativa.
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2o. Un vector AD, es suma geométrica de cualquier 
número de vectores cuyo polígono se encuentra cerrado por
AÍ).

Casos particulares

DOS VECTORES

Los dos vectores P A y P 2 for­
man en el punto A (fig. 9)f la
suma geométrica P, -f- P> =  R 
siendo R el vector AB; de la 
misma manera se obtendría cons­
truyendo P 2 -j" Pj =  R. La
construcción del conjunto nos in­

dica un p a r a le lo g r a m o ,  cuyas bases son P, y P ,  y del cual
la diagonal que parte de A , es la suma geométrica R.

TRES VECTORES

Los vectores P lf P „  P3 trans­
portados al punto A, no se en­
cuentran en un mismo plano, 
pero, dos a dos, definen tres pla­
nos. En el punto A  coloquemos
el vector en (fig. 10), a
continuación en 6 C  el vector P 0
y por último en CD el vector Ps; 
el contorno poligonal A B C D  de­
fine en Á 5  un vector Á ü  =  p,
4- p _. +  ¡T

Sí en lugar deí arreglo anterior, efectuamos la construc­
ción medíante las diferentes combinaciones:
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r , + p . + p .
R, + p, + p~
P>mi + p , + p
P.

• ) + p, + p¡
P + p . + p7

T odas  ellas con idéntica suma geométrica (el vector A D ) ,  
esta construcción no es otra que un paralelepípedo formado so­
bre los tres vectores P j , P ,  y P.. como bases y del cual, la 
diagonal que parte de A, es la suma geométrica de los vec­
tores.

Diferencia de vectores

La diferencia de dos vectores P , ,  — P., =  R, es equiva­
lente a P, =  R —|— P 2 y se de­
duce de la construcción de la fíg.
11, en la cual la suma P . ,- (-R =

■'¿-v * P (, es decir que la diferencia
geométrica de dos vectores, está 

representada por un vector R  cuyo origen se encuentra en la 
extremidad del substraendo y el final en la extremidad del mi­
nuendo.

No hay que perder de vísta que las operaciones anterio­
res son meras construcciones que nos indican resultados vec­
toriales con prescíndencía de los puntos de aplicación; así, el
vector BC =  R  no se encuentra aplicado en B: índica un vec­
tor equipolente aplicable en algún punto determinado por pro­
blemas de aplicación que se verán más tarde.

La diferencia geométrica P, — P., =  R, se la puede obte­
ner medíante la construcción del paralelogramo aplicado a la
suma, como se desprende de la ecuación P, — P.2 =  P, +
(—P>) =  R y la fíg, 12, en ABC nos da el vector R



diferencia geométrica de P, — P , =  R, según la construcción 
de la fíg. 1 1. Pero si en el punto A colocamos los dos vecto-
res P, y ( -  P>) y efectuamos la suma, medíante la construc­
ción del paralelogramo AEDC, la diagonal AD nos da un
vector R ' equipolente a R.

Multiplicación de vectores

llama producto de dos vectores
(P ,) X  (Po)' 1̂  c a n t i d a d
P, X  P > X  cos a ^ue es igual alproducto de sus magnitudes ab­
solutas por el coseno del ángulo 
que forman sus direcciones. De 
lo que se deduce que el signo 
depende del ángulo: positivo
para un ángulo agudo y nega­
tivo para un obtuso.

Representación analítica

Por definición se
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PROYECCIÓN SOBRE UN EJE:

Sea el eje x x f cortado por un plano P que se llama pla­
no director (fig. 14).

%Para proyectar un punto A del espacio sobre el eje x xf, 
se traza un plano Q paralelo al plano director y que contenga 
el punto A; el punto a en donde el plano Q encuentra el eje, 
es, por convención, la proyección del punto A del espacio so­
bre el eje ,r x\

De lo anterior se deduce que todos los puntos que forman 
el plano Q y por tanto todas las ícelas del plano, se proyectan 
en a sobre el eje x x\

La proyección del vector AB sobre el eje x x\ se obtiene 
mediante las proyecciones de los puntos A y B, origen y ex­
tremidad del vector. Esta proyección ab es un vector si con­
sideramos que un móvil ficticio ocupa sobre el eje x xy los 
diferentes puntos proyectantes del móvil que engendra el vec­
tor AB.

Por tanto, se puede decir cjue la proyección del vector AB 
sobre el eje x x\ es el vector ab cuya dirección es la del eje.

Teorema de Mübius

La proyección sobre un eje de la suma geométrica de vec­
tores, es igual a la suma algébrica de las proyecciones de los 
diferentes vectores.
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En efecto: consideremos el contorno poligonal ABCDE
en el cual los vectores AB -f- BC -j- CD -f- DE, tienen como 
suma geométrica ¿1 vector AE: Si consideramos los vectores
proyectantes ab, be, cd, de, todos estos vectores que se en­
cuentran en una misma dirección sumados algébricamente dan
un valor ae que no es otro que el del vector ae proyección de 
la suma geométrica de vectores. Si los vectores son P,, P., 
P¡, Pn y R la suma geométrica, llamemos Px,,  Px,,  Px,, Pxn 
y Rx las proyecciones respectivas sobre el eje de x: tendremos

Rx =  Px, -f- P x ,  -j- Px^ -f* P xn  =  £ Px.
Proyecciones ortogonales

Para determinar las proyecciones de vectores sobre un 
eje, hemos considerado una definición general, por tanto, las 
deducciones generales son aplicables al caso particular en que, 
el plano director es perpendicular al eje de proyección.

A
»il ' /

• iX- X

!¡r
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Las proyecciones se llaman, entonces ortogonales.
La proyección ortogonal de un vector sobre un eje, es 

igual a la magnitud del vector, multiplicada por el coseno del 
ángulo que forma el vector, con el sentido positivo del eje 
orientado de proyección: En efecto, sea x x' el eje; el vector
AB tiene su proyección ortogonal en ab. Por el punto A 
tracemos la paralela A B ' al eje x x'; ab =  AB', pero, ABB' 
triángulo rectángulo en B', dá como valor para AB' uno de 
los catetos con relación a la hipotenusa AB:

AB' =  ab =  AB eos a

El coseno del ángulo a da el signo al vector proyectante, 
como se puede comprobar en la fíg. 18, en donde el vector
proyectante ab tiene sentido negativo y el ángulo a tiene tam­
bién signo negativo para el coseno.
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Coordenadas de un punto

Sí por un punto o dcí espacio trazamos (fíg. 19) tres ejes 
rectangulares, dos a dos, obtendremos un triedro rectángulo. 
Los ejes que lo forman ox, oy, oz son orientados como lo de­
muestra la figura y con relación a ellos, podemos determinar 
la posición de cualquier punto A del espacio, por medio de las 
coordenadas A 'A =  z\ A ” A T =  y; oA ”  =  x.

Para determinar estas coordenadas, la analítica nos ense­
ña que, por el punto A se trazan tres planos paralelos a los 
planos directores determinados por los ejes coordenados; así, 
para proyectar sobre el eje de ox el plano proyectante es para­
lelo al formado por yoz; el plano proyectante (AA'Aj) corta 
el eje de ox en A, determinando una dimensión lineal OA, = x  
o sea una coordenada. De igual manera encontraríamos las 
coordenadas correspondientes a los ejes oy y  oz.

>

De acuerdo con la convención anterior, en la figura 20, 
se puede notar la construcción geométrica que permite obtener 
las coordenadas xt y f z medíante la proyección del punto A 
sobre cada uno de los ejes coordenados. Por la misma figura 
se desprende que los tres planos directores yox, yoz, xo%, jun­
to con los píanos proyectantes A A TA,, AA'A,, A A \ A  ., forman 
un paralelepípedo rectángulo mediante el cual deducimos va­
lias maneras de encontrar un punto A del espacio, por medio 
de sus coordenadas (,r, y, z).
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Io. Sobre cada uno de los ejes se toma la longitud indi­
cada por la coordenada respectiva, a partir de o; determinados 
asi los puntos A,, A.2, A ., por cada uno de estos puntos se tra­
zan planos perpendiculares, respectivamente a cada eje; el 
punto A común a los tres planos trazados, es el punto de co­
ordenadas consideradas.

2o. Sobre el eje oxf se toma oA l =  x; por A 1 tracemos 
una paralela al eje oy y sobre esta paralela tomemos A lA '= y ; 
por A ' tracemos una paralela al eje oz y sobre esta paralela 
tomemos A ’A  z= z. El punto A se lo ha encontrado median­
te un móvil que ha recorrido vectores determinados por las co­
ordenadas.

O ñ S E N V  ACIÓN

Debido a los ejes coordenados rectangulares, las rectas 
A'„A, A 'jA , A*A son perpendiculares bajadas desde el punto 
A hacia los planos coordenados o directores y sobre estas per­
pendiculares, contadas uesde el plano al punto, se encuentran 
también las dimensiones y valores de las coordenadas.
Determinación analítica de un vector

Consideremos tres direcciones ox, oy, oz perpendiculares 
entre ellas.
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Según las direcciones de cada uno de los ejes (ox, oy, oz) 
coloquemos tres vectores concurrentes en o — Los vectores
oB, oC y oD tienen como suma geométrica el vector oA y sa­
bemos que corresponde a la diagonal de un paralelepípedo que, 
en el caso presente, es rectangular.

Los vectores oB, oC, oD, siendo los componentes del
vector oA, son al mismo tiempo las proyecciones del vector
oA, sobre los ejes ox, oy, oz que, para los fines del análisis, 
son los ejes coordenados.

Las proyecciones tienen como valores:
oA eos a 
oA eos [j
oA eos y

Sí llamamos P  al vector y X, Y, Z sus proyecciones or­
togonales, tendremos:

X  =  P  eos a 
Y =  P  eos p 
Z =  P  eos y

Además debemos observar que estas proyecciones X, Y, 
Z son (con relación a los ejes coordenados) las coordenadas
de un punto A. El punto A de un vector oA cuyo origen 
coincide con el origen de los ejes coordenados, se llama índice 
del vector.

Relaciones entre el vector y sus proyecciones

Los valores X, Y, Z siendo los lados de un paralelelípedo 
rectangular; están ligados con la diagonal P  por medio de la ecuación:

P  =  )/X- + Y- + Z-
y los ángulos del vector P  con los ejes coordinados, por medio 
de las siguientes ecuaciones:
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eos a = --------------------
]/X-  + Y- + Z-

Y
eos ¡3 = ---------------- :—

| X- + Y- + Z-
Z

eos y = --------------------
]/X- + Y- + Z-

Por tanto, bastan las proyecciones X, Y, Z para determi­
nar el vector P  en magnitud, dirección y sentido; el punto de 
aplicación queda en este caso el mismo que el de sus compo­
nentes.

Suma de vectores
—mam mtmtmm oxocrw m b ipSean varios vectores P ,,  P L„ P ;;, Pn aplicadas en un 

punto o en diferentes puntos del espacio. En cualquier caso, 
puedo trasladarlos equipolentemente a uno sólo con el objeto 
de obtener la suma geométrica que se obtiene mediante un con­
torno poligonal del cual el vector R  es la suma buscada.

X

310
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Proyectando el contorno poligonal sobre un eje (el de 
ox) tendremos la siguiente igualdad algébrica:

X =  X, -J- X 2 -j- X., -f- Xn — *^Xí
de igual manera tendremos sobre los otros ejes:

Y =  Y, +  Y 2 +  X , +  Yn =  SYí 
Z jps Z., —j-  Z.¡ +  Zn =  IZ i

Estos valores X, Y, Z, son las proyecciones o sean las
componentes ortogonales del vector R y con ellos está definido 
el vector en magnitud, dirección y sentido. Las coordenadas 
del punto de aplicación lo definirán completamente.

Las ecuaciones correspondientes son:
R  j j  j/(X, -i- X, + X:; + Xn)- -I- (Y, +  Yl. 4- Y:i -f Yn) - -r (Zx + Z, + Z3 +  Zn)- 

o sea
R  =  | / —Xi- -f- — Y¡- -|- -  Z¡- 

y los ángulos a, p, y de R con los ejes coordenados:
:x,

eos a

eos 3

R

¡Y,
R

;z,
eos Y

R

Momento lineal

Por definición, llámase momento lineal de un vector P 
(líg. 23) con relación a un punto o del espacio, el producto 
^  X  c de su magnitud por la distancia c a su dirección. La
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distancia o desde eí punto a la dirección del vector, se llama 
«brazo de palanca» y o «centro del momento».

Para  indicar que eí momento de un vector P  es con rela­
ción a un punto o, se simboliza así: M oP =  P X c .

Representación vectorial dei momento

La representación del momento de un vector con rela­
ción a un punto o del espacio, se hace mediante un vector
OL definido por las siguientes condiciones:

I a. Punto de aplicación: el centro de momentos;

2a. Magnitud: el producto P  X
3a. Dirección: perpendicular al plano formado por el 

vector y  eí punto;
4a. Sentido: el üc un observador que, con los píes, en

o y la cabeza en L, contempla siempre al vector P  de iz­
quierda a derecha, es decir en sentido de marcha de las agu­
jas del reloj.

O b s e r v a c i o n e s :

a) Eí momento de un vector se anula con P  X   ̂— ° 
Io. P  =  o; el vector es nulo;
2o. o =  o; eí brazo de palanca es nulo, es decir el cen­

tro o se encuentra sobre la dirección del vector.
b) El valor del momento es equivalente al doble de la

superficie del triángulo formado con el vector P  como base 
y el punto o como vértice.
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c) El valor del momento no cambia (fíg. 24) cuando eí 
vector P  se desplaza a cualquier punto de su dirección, pues
P y 5 no cambian de valor.

d) Los momentos son equivalentes y representados por 
vectores equipolentes OL y O fU  (fíg. 24) cuando el centro o 
del momento, se encuentra en cualquier punto o sobre una
recta od  paralela al vector P.

e) El vector OL =  P X  * puede serlo de P ' X ^  =  OL 
(producto constante).

Teorema

El momento de un vector P  es el mismo que el de su 
proyección ortogonal sobre un plano perpendicular a la recta 
que une el centro de momento y eí punto de aplicación del 
vector; este plano proyectante pasa por el punto de aplicación 
del vector.

Sea (fíg. 25) un punto A de aplicación del vector P  y o 
centro de momento; por A tracemos el plano Q perpendicular
a la recta OA y proyectemos ortogonalmente en P '  eí vec­
tor P.
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El piano OABC perpendicular a Q (O A  y BC perpen­
diculares a Q) contiene los dos vectores P  y P \  Los trán- 
gulos OAB y O A C  son equivalentes por tener la base OA 
común y los vértices B y C en la paralela a dicha base; lue­
go el vector OL perpendicular al plano común es el momen­
to de cualquiera de los vectores P  y PL

Además, el vector OL (momento) se encuentra en un 
plano Q '  perpendicular a OA, siendo su valor P '  X  OA, es
decir, la proyección de P  por la distancia entre el centro de 
momento y el punto de aplicación del vector.

Momento resultante

Cuando un sistema compuesto de vectores P ,,  P.it P ;t,
Pn, se encuentran aplicados en puntos A,, A„, A.., An del es­
pacio, podemos considerar los momentos de cada uno con re­
lación a un punto o centro de momentos y tendremos sucesi­
vamente:

M o r ,  =  r ,  x  s,
M oP , =  P ! X í ,
M oP, =  P 3 X  5,
M oPn =  P n  X

todos representados por vectores OL,, OL.„ OL.,, OLn apli­
cados al punto o.
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La suma de estos momentos será un vector OL llamado
«momento resultante» igual a IM oPí — LOLí — LPí X

Teorema de Varignon

Cuando los vectores son concurrentes, es decir, aplicados 
en un mismo punto, el momento de la resultante es igual a la 
suma geométrica de los momentos de las componentes, o sea 
al momento resultante.

V

Sea A un punto del espacio en el cual están aplicados los 
vectores AB y AC.

Siendo o el centro de momentos; por A trazamos el pla­
no Q perpendicular a OA y por o el plano Q ' paralelo a Q.

El vector AD, diagonal del paralelogramo ABDC, es la 
resultante geométrica de AB y AC.

El paralelogramo se proyecta en el plano Q  según el 
paralelogramo AB'D 'C ' y los momentos de AB, AC, AD,
son los mismos que los momentos de AB', AC', AD', y sus
valores son:

MoÁB =  AB' X  OA
MoAC' =  AC' X  OA 
MoAD' =  AD' X  OA



316 A N A LES  DE L a

por tanto los vectores momentos tienen como valor cada uno 
de los vectores del paralclogramo, multiplicados por una can­
tidad constante O A ,

Como hemos visto anteriormente, los vectores momen­
tos se encuentran en un plano Q '  paralelo a Q y pasando 
por o; luego todos son perpendiculares a O A .

La recta O A  es la arista común de los planos OA.B', 
O A D ' y O A C  que son los píanos formados por el centro 
de momentos con cada uno de los vectores; como los vec­
tores AB', A D \  AC* se encuentran en un plano perpendicu­
lar a O A , los ángulos diedros están representados por los 
ángulos ol y [j de los vectores.

Los ángulos a y [j se proyectan en verdadera magnitud 
en el plano Q t medíante las trazas O B ” , O D ” y O C ” .

Sí en el plano Q f trazamos
O L , =  A B ' X  O A  perpendicular a O B ”
O G = A D ' X O A  » a O D ”
O L , =  A C ' X O A  » a O C”

El paralelogramo OL,GL., será homotétíco del paralelo- 
gramo A B 'D 'C ' y finalmente O G  suma geométrica de OL, 
y OL., es el momento de AD' o sea de la resultante AD de 
los vectores AB y AC.

Varios vectores

Consideremos la suma geométrica de vectores concu­
rrentes R =  P, -f- P., -f- P., -f- Pn.

Sí llamamos R ,—Pj-J-P., tendremos M o R ]= M o P 1-|-MoP.,
» R . , = R 1-f_P;¡ » M o R -^ M o R j- f -M o P .,

» R“ ¿ R , + P n  » M oR  = M o R 2+ M o P n
Sumando tendremos MoRpfMoPj-l-MoPo-l-MoPy-j-MoPn.
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Momento con relación a dos puntos 0 y 0

Consideremos un vector P  co­
locado en A y perpendicular al 
plano del papel; el vector en es­
tas condiciones estará proyectado 
en A. Los puntos o y  o, centros 
de momentos los desplazamos en 
sus líneas proyectívas paralelas a 
la dirección de P, hasta el plano 
del papel y sabemos que los vec­
tores momentos no cambian de 
valor.

Tomemos los momentos del vector P  con relación a o 
y o,; estos momentos estarán representados por

O K  =  P X  OA =  MoP
0 , N  =  P X O , A = M o , P  1

de donde P O K  _  0 , N  
OA — O, A

Por O, tracemos 0 ¡M  perpendicular a O, O y por N  
una paralela N M  a O K .

El triángulo 0 ¡M N  es semejante al triángulo O^AO, 
por tener los lados perpendiculares entre ellos, de donde se 
deduce que:
O ,N  _  0 , M  _  MN 
O,A — 0 , 0  “  OA pero como anteriormente teníamos

O .N  
O, A P deducimos que M N = O K = M o P ;  0 . M = P X 0 , 0 .

0 , M  =  P X  0 , 0  sería el momento con relación a O,
de un vector equipolente a P, pero colocado en O y por es­
ta razón se lo simboliza por Po.

Considerando el triángulo 0 {M N t vemos que, de acuer­
do con los sentidos indicados por las flechas, el vector 0 , N
es igual a la suma geométrica de dos vectores: 0 , M y M N ,  
los que respectivamente tienen los valores indicados en la fi­
gura y por tanto se deduce que:
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EL momento con velación a un punto O, de un vector ~P 
es igual a la suma geométrica del momento con relación a un 
punto O más el momento con relación a O, de un vector equi­
polente a P, colocado en O.

• • •• •  • • • ,

El teorema queda simbolizado así:
M o,P  =  M oP  -f- M o,Po

Momento de un sistema de vectores con relación a dos 
puntos O y  O, del espacio.

Sea un sistema de vectores P \  P ” , P ' ” , etc. colocados 
en puntos cualesquiera de aplicación, y sean O y Oí dos 
centros de momentos.

Considerando la relación anterior para cada uno de los 
vectores, tendremos las igualdades siguientes.

M o ,P '  =  M o P ' + M 01P 0'
M 01P ”  =  M o P ” +  M 01P 0”
M o jP '”  =  M o P ” +  M 01P 0” '

Sumando las igualdades anteriores tendremos:
I M o ,P '  =  S M o P ' +  ^M o ,P o ' ,  pero ^ M o ,P o '  o sea el

mamento resultante con relación a O, de vectores colocados 
todos en O, es igual al momento de su Resultante de tras­
lación colocada en el mismo punto O ; es decir

^ M o .P o '  =  M o,R o
y la ecuación queda

S M o jP  =  2 M o P  +  M o jR o

Sí se designa por G y G, los momentos resultantes con 
relación a los puntos O y O, del espacio, simbolizamos la 
ecuación anterior por:

G, — G M o,Ro
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Por tanto, el momento resultante de un sistema vecto­
rial, con relación a un punto O, del espacio, es igual al 
momento resultante con relación a un punto O, más el mo­
mento con relación a O, de la resultante de traslación for­
mada con los vectores del sistema, en el punto O.

i

Invariantes de un sistema de vectores

Para cualquier sistema de vectores P ', P ” , P m, etc., 
existen dos cosas invariables:

Io. La suma geométrica;
2o. La proyección del momento resultante sobre la di­

rección de la suma geométrica.
En efecfo. sean O y O, dos puntos del espacio, arbi­

trariamente escogidos; si trasladamos equipolentemente los 
vectores del sistema a cada uno de los puntos considerados, 
en cualquiera de ellos obtendremos un polígono idéntico del 
cual la suma geométrica será siempre la misma, Sí llama­
mos R, la suma geométrica de traslación en el punto O, y 
Ro  la suma geométrica de traslación en el punto Ot siem­
pre tendremos

R, =  Ro.
Consideremos ahora la ecuación vectorial

G, =  G -f- Mo[Ro
entre los momentos de un sistema con relación a dos puntos 
O y O, del espacio.

El vector G, es igual al vector G, más el vector MojRo 
proyectemos estas igualdades vectoriales sobre la dirección 
de R, o de Ro que le es paralela y tendremos:
proyección de G, =  proyección de G -}- proyección de Mo,Ro
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El vector MojRo, es un vector perpendicular al plano 
formado por los vectores paralelos R, y Ro y su proyección 
sobre la dirección de R, es nula; por tanto:

proyección de G, =  proyección de G.

Momentos

Sea

(le vectores con relación a un eje

D e f i n i c i ó n :

x xT un eje y P  un vector del espacio.

Tracemos un plano Q perpendicular al eje xx y P10 
yectemos el vector P  sobre el plano Q.
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El punto O es aquel en que el eje x xy encuentra al pla­
no Q, es decir la intersección del eje y del plano; el vector
P  es la proyección de P  sobre el plano O; por definición: 
el momento de P  con relación al eje x xf, es el momento li­
neal de P '  con relación O.

La representación vectorial del momento, de acuerdo con
la convención primitiva, será hecha por medio del vector oí 
aplicado en O y perpendicular a O, es decir, coincide con el
eje y es aplicado en cualquier punto de este eje, ya que O es
arbitrario, por serlo así la posición del plano Q perpendicular 
al eje.

Teorema

El momento de un vector con 
relación a un eje, xx' es igual 
a la proyección sobre este eje, 
del momento lineal del vector 
con relación al punto O del eje.

Sea AB el vector y A 'B ' su 
proyección sobre el plano Q; por
convención, el momento de ÁB 
con relación al eje, es el mo­
mento lineal de A 'B r con rela­
ción a O f el que, representa­
do por ol, es igual, en va­
lor, al doble de la superficie 

del triángulo O A 'B '.  El momento lineal de A B  con
relación a O está representado por OL y es igual al doble 
del triángulo OAB. Pero O A ’B' es la proyección del trián­
gulo OAB, siendo su valor OAB X  cos a í rJL es ángulo
diedro de los planos de los triángulos. C o m o  ol es perpen­
dicular al plano OA 'B ' y O L  es perpendicular al plano OAB, 
las rectas ol y O L  forman un ángulo que es precisamente a

A
y como ol =  2 0 A 'B ' .

O I, =  2 0 A B  y como OA'B ' =
do valores, tendremos que:

1 Y BlTJ° l  =  O L  eos a, es decir ol es la proyección, sobre el
eje, de O L.

OAB X  cos a sustituyen-
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Teorema

Cualquiera que sea el punto 
O  sobre el eje xx la proyección 
sobre dicho eje del momento li­
neal de un vector con relación a 
un punto O  del eje, es constante. 

En efecto, sean O y O, dos
puntos cualesquiera del eje; “o\ es

sanotn —  mmmes la proyección de OL y 0,1, es 
la proyección de 0 ,L , .

Como OL y 0 ,L ,  son los mo­
mentos lineales de un vector P  con relación a 2 puntos 
O y 0\ del espacio, entre los momentos hay la relación
OL, =  OL -f- Mo,Po. Sí proyectamos sobre el eje xx' esta 
igualdad vectorial, tendremos:

proyec. de OL, =  proyec. de OL -\- proyec. de M o,Po.
* -  —— -El vector M o,Po  es un vector aplicado en O, y per­

pendicular al plano formado por o, y un vector equipolente 
a P  aplicado en O; por tanto es perpendicular al eje xx' y 
su proyección sobre dicho eje es nula; luego
proyec. de O,L, = p ro y ec .  de OL (sobre xx') es decir

o1l1= o L

O b s e r v a c i o n e s

La nulidad del momento de un vector con relación a un 
eje se realiza cuando el vector y el eje están en un mismo 
plano. En este caso, o son concurrentes y el brazo de pa­
lanca es nulo, o son paralelos y la proyección del vector 
sobre un plano Q  perpendicular al eje, es nula.

Momento resultante con relación a un eje

Un sistema de vectores P f, P ” , P m, considerados cada 
uno de los vectores, tendrá un momento representado por un 
vector de dirección del mismo eje, por tanto la suma geomé-
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trica que se reduce a una suma algébrica, se la llama mo­
mento resultante y se le simboliza por

g =  M xx 'P '  +  M x x 'P "  +  M x x 'P '"  =  SM xx' P. 
O b s e r v a c i ó n

Como la teoría vectorial está basada exclusivamente en 
la idea del movimiento y éste se relaciona a la orientación 
de trayectorias, un eje cualquiera x x' se lo supone orientado
y por tanto los vectores oí, ol', ol" representativos de mo­
mentos con relación al eje, tendrán los signos correspondien­
tes a la orientación del eje.

m .

Teorema

El momento resultante g con relación a un eje, es igual 
a la proyección sobre el eje, del momento resultante lineal
G de un sistema vectorial con relación a un punto del eje.

En efecto: sea un sistema vectorial P', P",  P " '  y o un 
punto del eje x x\

El momento resultante con relación a o es
M oP' +  M oP" +  M o P "  =  G

proyectemos esta igualdad sobre el eje i r  y tendremos
M x x 'P '  +  M x x 'P "  +  M x x 'P '"  =  proyección de G

pero el primer miembro de la ecuación es g, luego
g —  proyección de G.

Corolario

Sí los vectores son concurrentes hemos visto que el mo­
mento de la resultante, es el momento resultante, en otra forma:

MoR =  G
proyectemos sobre xx' suponiendo que o está sobre el eje, ten­dremos:.
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M xxR  =  g,
es decir que el momento de la resultante de vectores concurren­
tes con relación a un eje xx', es igual al momento resultante.

Expresión analítica tle momentos

Sean oxr oy, oz tres ejes coordenados rectangulares.
A, un punto del espacio definido por las coordenadas 

(x, y, z). En el punto A  un vector P, definido por sus com­
ponentes X, Y, Z que no son otra cosa que las proyecciones
del vector sobre los ejes. El vector P  es, por tanto la resul­
tante geométrica de tres vectores concurrentes X, Y, Z y como 
el momento de P, es igual a la suma de momentos de sus 
componentes, por tanto, en lugar del momento de P, conside­
ro simultáneamente los momentos de X, Y, Z con relación 
a cualquiera de los ejes.

Tratemos, pues, de buscar el momento del vector P con
relación al eje ox. _

De acuerdo con la convención, proyecto P  sobre el plano
yoz perpendicular a ox; pero en lugar de P  proyectamos sus 
componentes: Y, Z, se proyectan en verdadera magnitud, siendo 
nula la proyección de X. y, z, son los brazos de palanca y el
momento de P  será igual al momento de Y más el momento
de Z.

Luego: M ox P =  yZ — z Y  

tomando en cuenta que el momento de Y es negativo.
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De idéntica manera obtendremos los momentos con re­
lación al eje de oy y al eje de oz. Las tres expresiones son:

MoxP =  yZ — zY  
M oyP  =  z X  — xZ 
M ozP —  xY — y X

Momento con relación al origen de los ejes

Ya hemos visto que el momento de un vector con rela­
ción a un eje es la proyección sobre dicho eje, del momento 
lineal con relación a un punto del eje.

En la (figura 33) tenemos O origen de los ejes, y por tan­
to, punto común de todos ellos. Sí consideramos el vector P, 
el momento con relación al punto O  estará representado por
medio de un vector O L ; sí proyectamos O L  sobre cada uno 
de los ejes coordenados, encontraremos los momentos con re­
lación a dichos ejes, es decir: sí Lx, Ly, Lz son las proyeccio­
nes de L, resulta que:

Lx =  MoxP =  yZ  — z Y  
Ly  =  MoyP =  z X — xZ 
L z =  M.ozP =  xY  — y X

es decir, las expresiones encontradas anteriormente.
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Conocemos Lx, Ly, L^, que son las componentes de L 
según tres ejes coordenados rectangulares, luego, conocemos "H

L =  •)/ La:2 '+ Ly2 + Lz- Cen magnitud)
Si llamamos a, b, c los ángulos que forma L con los 

ejes coordenados, tendremos sus valores por

eos a La:

eos b

L
Ly

eos c Lz
L

que nos dan la dirección y sentido 
deduciendo de Lx =  L eos a

Ly  =  L  eos b
Lz  =  L eos c

Momento con relación a mi eje o í que pasa por el origen de las
coordenadas

Sea O T  el eje, definido por medio de los ángulos a, ¡3, y 
con los ejes coordenados. El momento del v ector P  con rela­
ción al eje, es la proyección sobre este eje de OL puesto que O
es punto del eje Ó T . Para  proyectar el vector OL sobre O Tf 
podemos proyectar sus componente Lx, Ly, Lz ; la suma algé­
brica de estas proyecciones, es la proyección buscada; por 
tanto:

M otP  =  Lx  eos a - f  Ly eos (3 +  Lz  eos y
esta expresión se puede también poner bajo otra forma, en 
función de L; basta reemplazar los valores de Lx, Ly, Lz . 

Entonces
M otP  =  L  (eos a eos -j- eos b eos [3 -f- eos c eos y)«
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Determinación analítica de la suma geométrica y del momento resul­
tante de un sistema de vectores, con relación al punto O, 
origen de los ejes coordenados

Consideremos un sistema de vectores P ,,  P.,, P.,.......  etc,
aplicados en puntos diferentes (en general) del espacio; sean 
ox, oy, oz los ejes coordenados.

Sí consideramos el punto o, podemos trasladar a él, todos 
los vectores para obtener la suma geométrica de traslación
R =  - P ,  pero analíticamente R  será dada por sus componen­
tes R jt, Ry, R# que no son otra cosa que las sumas algébricas 
de las proyecciones de los vectores sobre cada uno de los ejes.

Rx =  X t +  X , +  X ,  =  ZX
Ry =  Y, +  Yo +  Y, =  SY
R z  =  Z, +  Z ,  +  Z ,  =  ZZ

Así mismo, si con relación al punto O, tomamos los mo­
mentos de cada uno de los vectores, en el punto O  serán re­
presentados por otros vectores L,, L„, L.¡ que a su vez se 
suman geométricamente para obtener

G =  L, -f- L;) -f- L.j =  Momento resultante;
pero, los vectores L,, L.,, L;1 son dados analíticamente por 
medio de las proyecciones (Lt, Ly, Lz) sobre los ejes coorde­
nados, luego:
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G* =  Lxx -f- L.,* -)- L.;* =  Z(yZ — z Y ) 
Gy =  L,y -}- L._,y -¡- L.ty =  Z(¿X — x Z ) 
G# =  L ,#  -f- L.,^ -f- L;ĵ  =  Z(*Y — yX)

Pares

Se llama un par de vectores, a dos
vectores tales como P  y P* cuyas 
direcciones son paralelas, sus mag­
nitudes iguales y sus sentidos con­
trarios.

Brazo de palanca, del par de vectores, es la distancia o 
de sus direcciones.
Teorema

El momento resultante de un sistema vectorial, cuya su­
ma geométrica es nula, es constante, cualquiera que sea el 
punto centro de momentos.

En efecto sean O y O, dos centros de momentos; los mo­
mentos resultantes están ligados por

G, =  G -j- Mo,Ro,
pero sí Ro =  O el momento con relación a cualquier punto 
es nulo y G, =  G, es decir, constante.

Eje representativo de un par

El momento resultante dé un par es 
el producto P  X  Pues siendo el mo­
mento constante, podemos tomarlo con 
relación a un punto en uno de los vec­
tores. El momento de este vector se­
rá nulo y el momento resultante será 
el del otro vector, es decir, P  X
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De acuerdo con lo convenido para la representación del
momento del par, que lo es del vector P, este momento estará
representado por el vector O N  perpendicular al plano del par 
y cuyo valor hemos visto ya. El sentido será también el
convencional. El vector ON, así definido, se llama eje del par 
y siendo constante, es el eje representativo del par.

Teorema

El momento resultante de un sistema de Pares, es cons­
tante.

En efecto, cada par tiene suma geométrica nula y la suma 
de todos los pares será también nula, por tanto, el momento 
resultante es constante.

Suma geométrica nula y momento resultante nulo

Sí consideramos un punto O, siendo la suma geométrica
nula para este punto de reducción, lo será para todo otro 
punto.

Siendo nula la suma, el momento es constante y como 
ya es nulo para un punto, lo será para todo otro centro de 
reducción del espacio.

Así mismo, si la suma geométrica es nula y el momen­
to resultante nulo para cualquier punto del espacio, será tam­
bién nulo el momento con relación a cualquier eje del espacio.

Lo anterior se traducirá por
R =  2P  =  o y G =  -M o P  =  o

y analíticamente:

Rx =  o Gx =  o

Ry =  o con Gy =  o
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Equivalencia de vectores

Dos sistemas de vectores son equivalentes cuando, to­
mando en cuenta cualquier punto del espacio como centro de 
reducción, la suma geométrica de los vectores que componen 
el sistema, así como el momento resultante son iguales 

Sí un sistema se compone de los vectores
P,, P2, P3  Pn

y el otro de los vectores
P?, P ?  P^i

la equivalencia se la traduce por:
R = F  y G = ’( ?

Basándose en el principio de equipolencia así definido, 
es fácil comprobar que dos vectores equipolentes aplicados en 
dos puntos diferentes de una misma recta, constituyen dos 
sistemas equivalentes y esto se traduce diciendo que el punto 
de aplicación de un vector puede ser trasladado a un punto 
cualquiera de su dirección.

Además, un par vectorial, siendo representado por su 
eje, otro par que tenga como eje un vector equipolente, cons­
tituirá un sistema equívolente al anterior: para los dos la suma 
geométrica es nula y el momento resultante es el mismo.

La equivalencia de sistemas, analíticamente

Los dos sistemas de vectores referidos a ejes coordena­
dos, darán como expresión de equivalencia las siguientes 
ecuaciones:

330
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además en cuanto a los momentos con relación a los ejes coor­
denados:

2(yZ — z Y ) =  ~ ( / Z '  — z*Yf) o sea Gx =  GY
2(íjX - x Z )  =  L(VX' — x 'Z ')  o sea
2(xY — yX) =  S O 'Y ' — y X O  o sea "Gz =  W z

lo que equivale también a decir que el momento resultante 
con relación al origen de los ejes coordenados es igual.

Teorema

Cuando dos sistemas de vectores tienen la suma geomé­
trica y el momento resultante igual para un centro de reduc­
ción, lo tienen también para cualquier otro centro y por tanto 
son equivalentes.

En efecto, supongamos que los sistemas
SP =  SP' junto con G =  G'

lo realícen para un centro de reducción O; vamos a probar 
que lo realizarán para cualquier otro centro O,.

En efecto, cualquiera que sea el punto del espacio, el po­
lígono de vectores no varía y, sí la suma geométrica es igual
en un punto, lo será en cualquier otro, es decir R =  R ' impli­
ca Ro =  R'o y Ro1 =  R o / ,  etc.

Los momentos de cada uno de los sistemas con relación a 
dos puntos diferentes O y O, están ligados por las ecuaciones:

G, =  G Mo,Ro para el un sistema
y G /  =  G f -f- Mo,Ro' para el otro.

Mo,Ro y Mo/Ro' son iguales puesto que Ro =  Ro' y
como por hipótesis G =  G', se deduce que cualquiera que sea 
el punto O, del espacio.



Teorema

Sí dos sistemas vectoriales son equivalentes, los momen­
tos resultantes con relación a cualquier eje, son iguales.

En efecto, sí son equivalentes tienen momento resultante 
igual con relación a un punto del eje; proyectando estos mo­
mentos sobre el eje, las proyecciones serán iguales.
Descomposición de vectores

De diferentes maneras se puede descomponer un vector, 
es decir encontrar un sistema que le sea equivalente:

a) En dos vectores que se encuentran en su mismo 
plano;

b) En tres vectores que no están en el plano del vector. 
Estas dos descomposiciones son perfectamente definidas,

es decir admiten una sola solución.
c) Para  descomponer en mayor número de direcciones, 

el problema es indeterminado.
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En la figura 27 vemos el vector O R  descompuesto se­
gún las direcciones ox y oy, en dos vectores O A  y OB.

oooOOj
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Los dos vectores forman un sistema equivalente al for­
mado por el vector OR.

La descomposición es posible cuando las direcciones ox 
y oy están en un mismo plano o en planos paralelos al vec­
tor P. La descomposición se hace medíante el paralelogra-
mo cuya diagonal es OR.

En la figura 38, vemos tres direcciones o*, oy, oz según
las cuales el vector OR se descompone, medíante la cons­
trucción del paralelepípedo, dando tres vectores OA, OB, OC 
que forman un sistema equivalente al formado por el vector
o r T

En cualquiera de estos casos es fácil ver que la condi­
ción de equivalencia se cumple siempre que cualquiera de los 
sistemas tengan los vectores aplicados en O.

Reducción de vectores

Se llama reducción de un sistema de vectores, la opera­
ción medíante la cual se encuentra el sistema más simple, que 
le sea equivalente.

Es evidente que el sistema más simple estaría representa­
do por un vector único y luego por un par de vectores.

Cuando de la reducción de vectores se deduce un vector 
único, este vector constituye o se llama la resultante del sis­
tema.
Teorema

Un vector P  puede ser trasladado equipolentemente a 
cualquier punto A del espacio, añadiéndole un par cuyo valor
es igual al momento de P  con relación a A.
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En el punto O  tenemos un vector O P  que lo trasladamos 
equipolentemente al punto A, según AP'; en A tenemos un 
vector representativo del momento de P  con relación a A y 
cuyo valor es P  X  Pero este momento es el representati­
vo del par del mismo valor formado por los vectores O P  y A P ” 
iguales en magnitud, sobre direcciones paralelas y de sentidos 
contrarios.

Para probar que los sistemas son equivalentes: Io. La
suma geométrica es la misma e igual al vector P; 2o. El mo­
mento resultante debe ser igual con relación a cualquier punto: 
tomemos A como centro; para el un sistema formado por el
vector único OP, el momento es P  X  para el otro sistema 
formado del vector A P '  y del par, el momento es el del par
E X  puesto que el momento de A P '  es nulo.

O b s e r v a c i ó n

A un sistema cualquiera de vectores se puede añadir o 
quitar dos vectores iguales de misma dirección y de sentidos 
contrarios, es decir, dos vectores iguales y opuestos, sin alte­
rar el sistema, puesto que se obtiene un sistema equivalente. 
En efecto la suma geométrica de los dos vectores es nula y 
los momentos de los dos vectores con relación a cualquier 
punto del espacio, serán siempre iguales y de sentidos contra­
rios, es decir se anulan entre ellos y por tanto no pueden al­
terar el momento resultante.

Teorema

Un sistema de vectores concurrentes puede ser reemplaza­
do por el vector resultante aplicado en el punto de concu­
rrencia.

• • ♦  • % a

En efecto: la suma geométrica de ambos sistemas es la 
resultante y en cuanto a los momentos sabemos que, el mo­
mento resultante de las componentes es igual al momento de
la resultante.
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Teorema

Un sistema compuesto por pares de vectores, puede ser 
sustituido por otro compuesto de un solo par cuyo eje, es la 
suma geométrica de los ejes componentes.

En efecto todos los pares tienen suma geométrica nula, 
luego las sumas geométricas son iguales.

Los ejes de los pares son constantes e iguales a los mo­
mentos de cada par con relación a un punto cualquiera del 
espacio, luego si en un punto dado formamos el momento re­
sultante, su eje representará un par que es precisamente el 
buscado.

O b s e r v a c i o n e s

Cuando se trata de dos o tres pares, el par resultante se 
obtendrá mediante el paralelogramo o el paralelepípedo forma­
dos con los ejes y de los cuales la diagonal respectiva será el 
eje resultante del par.

Un sistema cualquiera de vectores puede reducirse a un 
solo vector aplicado en el centro de reducción y a un par.

En efecto, sea A el punto escogido como centro de re­
ducción.

Cualquiera que sean los puntos de 
aplicación de los vectores que forman 
el sistema, cada uno de los vectores 
podemos trasladarlo equipolentemente 
al punto A añadiendo a cada uno un 
par cuyo eje sea el momento del vec­
tor con relación al punto A. Los vec­
tores son ahora concurrentes en A y
R los reemplaza en el sistema; los ejes

de pares se suman para encontrar el par resultante G que los 
sustituye. Tenemos pues, en difinítiva, en el punto centro de
reducción, un vector R igual a la suma geométrica de vectores
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y un par de eje G, que no es otro que el momento resultan 
te del sistema con relación al centro de reducción.

Teorema

Un sistema de vectores puede, en general reducirse a dos 
vectores de los cuales el uno pasa por el centro de reducción.

Acabamos de ver, como, un sistema cualquiera puede re­
ducirse a un vector R  aplicado en el centro de reducción A 
y a un par de eje AG. El par AG en el plano perpendicu­
lar al eje, puede constituirse por sus vectores A P  y BP'; 
pero los vectores A R  y A P  concurrentes, pueden ser reem­
plazados por un vector A S aplicado en el centro de reduc­
ción A y el sistema se completa con otro vector BP'.

O b s e r v a c i o n e s

En general AS y BP* no están en un mismo plano;
siendo A P  arbitrario y dependiendo de su valor la distancia
de B P ' al centro de reducción; hay pues una infinidad de ma­
neras para efectuar la reducción.

O b s e r v a c i o n e s
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Eí sistema se reduce a un solo vector igual a la suma 
geométrica de vectores y aplicado en el centro de reducción.

(b)  R =  O
G =£ O

La suma geométrica siendo nula, eí momento es constan­
te y eí sistema se reduce a un par de eje G.

C a s o s  p a r t i c u l a r e s

R y G son perpendiculares entre ellos.
Cuando la suma geométrica y el momento resultante son 

perpendiculares, el sistema se reduce a un vector equipolente a 
la suma geométrica y aplicado fuera del centro de reducción.

En efecto; sean OR y OG los vectores de la reducción 
en el punto o; en un plano Q perpendicular a OG y conte­
niendo OR, tracemos los dos vectores — R y R ' que forman 
el par y a una distancia OA =  5 de tal manera que G =  R X ^  
Los vectores — R y R se destruyen y queda únicamente el vec­
tor R ' colocado en A, según la enuncíacíación del teorema.

Eje central de momentos

Se llama eje central de momentos a la recta, lugar 
geométricos de puntos para los cuales el momento del sis­
tema es mínimun.
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Para encontrar esta recta supongamos el sistema redu­
cido a los vectores O R  y OG en el centro de reducción O. 
T racemos por O un plano perpendicular al formado por OR 
y OG; en este plano tracemos O G ” perpendicular a OR y 
descompongamos OG en sus componentes O G ' y OG” . 
O G ” y O R  siendo perpendiculares, pueden reducirse a un 
vector A R ' equipolente a OR. El sistema se reduce a un
vector AR ' y a un par de eje OG', ambos paralelos, reduc­
ción que se enuncia así: «entre todos los sistemas equivalen­
tes de vectores, hay uno para el cual, la suma geométrica y 
el momento resultante son paralelos.

Ahora bien: si tomamos el momento resultante del siste­
ma con relación a cualquier punto de AR, es fácil ver que este 
momento es igual a OG'. El momento con relación a otro
punto del espacio será mayor que OG', puesto que será la 
diagonal de un paralelogramo rectángulo, uno de cuyos lados
es OG'. Por  tanto A R  es la dirección o sea el eje central de 
momentos o sea también el eje de momento mínimo.

Sistema nulo

Se dice que un sistema de vectores es nulo o equivalen­
te a cero, cuando la suma geométrica y el momento resultan­
te son iguales a cero, para un punto del espacio.

Sí le son para un punto, lo serán para todo punto del 
espacio. Además, sí el momento resultante es nulo para cual­
quier punto del espacio, lo será para cualquier recta del es­
pacio.

Las ecuaciones que, analíticamente definen un sistema 
nulo son:
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SX =  O ; S(3)Z — «Y) =  O
2Y =  O 1 con S(*X — xZ) =  O
SZ =  O ' S(xY — yX) =  O

Teorema

Sí tenemos dos sistemas de vectores, el conjunto de ellos 
será nulo, sí el uno es equivalente a un tercero formado de 
vectores iguales y de sentido contrario a los del otro.

En efecto
S, =  (P, +  P , +  P a +  Pn) primer sistema
So =  (P* +  P ”  P ”  _r  P m) segundo sistema 
S., =  (—P, — P., — P 3 — Pn) tercer sistema

Sí el primer sistema tiene S, y G ( como resultante de 
traslación y momento resultante con relación a un punto O ,
el tercer sistema tendrá evidentemente — S, y — G, como 
valores equivalentes. Sí el segundo sistema no fuera equi­
valente al tercero, tendría resultante y momento diferente de
— S, y — G, y por tanto no formaría sistema nulo con
S, y G r

La condición es suficiente pues siempre
s ,  + ( - S , )  =  O y G, + ( - G . )  =  o

para cualquier punto del espacio.
De lo anteriormente expuesto se deduce:
a) Un sistema compuesto de dos vectores es equiva­

lente a cero, cuando los dos vectores son iguales, de sentido
contrario y dirigidos según la misma recta.

b) Un sistema de tres vectores de direcciones concu­
rrentes es igual a cero, cuando cualquiera de los vectores es 
igual y directamente opuesto a la resultante de los otros dos. 
Los tres vectores deben estar en un mismo plano.

c) Un sistema compuesto de un vector y un par, no 
puede ser nulo.



d) Un sistema compuesto de dos pares es nulo, sí los 
ejes son paralelos, las magnitudes iguales y dirigidas en sen­tidos contrarios.

Vectores en un mismo plano

En general, un sistema de vectores que se encuentran 
en un mismo plano, se reduce un solo vector que pasa fue­
ra del centro de reducción y que es equivalente a la suma 
geométrica.

En efecto, si tomamos como centro de reducción un pun­
to O  del plano, el polígono de vectores será plano y la su­
ma geométrica estará incluida en aquél. El punto estando 
en el plano, el eje de los momentos para cada uno de los 
vectores siendo perpendicular al plano, será una dirección co­
mún perpendicular al plano y pasando por O; el momento 
resultante es la suma algébrica de los momentos parciales y 
será de misma dirección que la de aquéllos: será, pues, per­
pendicular al plano y a la suma geométrica. Este caso se 
reduce a un vector único que pasa fuera del centro de reduc­
ción y es equipolente a la suma geométrica de traslación.

Analíticamente

Las seis ecuaciones de la reducción son:
Rx =  LX;

/Ry =  SY; con Gy =  2 (* X  — x Z )
R z  =   ̂ =  '-(xY  —  j>X)

/ *

Sí tomamos el plano de xoy por plano de los vectores, 
Jas coordenadas z y las componentes Z son nulas y por tan­
to introduciendo estas condiciones en las ecuaciones, tendre­
mos las que subsisten con un valor, en general.

Rx  =  LX .
con Gz  =  L(*Y — yX')

Ry =  2Y

A NALES DE LA
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Sí Rx y Ry son las componentes de un vector, quiere 
decir que el vector se encuentra en el plano xoy; si la com­
ponente del momento resultante es sólo Gz, el momento re­
sultante" tiene la dirección de OZ, por tanto es perpendicular 
al plano xoy.

Las condiciones para que el sistema de vectores coloca­
dos en un plano sea nula son

Rx =  O; R y  =  O; 2 (rY  — y X ) =  O 

Vectores paralelos

Los vectores paralelos que forman un sistema, se com­
ponen o reducen, en general, a un solo vector equipolente a la 
suma algébrica y que pasa fuera del centro de reducción.

En efecto, para formar la suma geométrica, los vectores 
deben ser colocados uno a continuación del otro, desde el 
centro de momentos. Como son paralelos, todos los vecto­
res coincidirán con la misma dirección común paralela a ellos 
y la suma geométrica se convertirá en suma algébrica, sien­
do la resultante un vector paralelo a todos, es decir, de la 
misma dirección común.

En cuanto a los momentos, cada uno está representado 
por un vector perpendicular al plano formado por el centro de 
momento y el vector respectivo, como la suma geométrica es 
paralela al vector, el vector momento será perpendicular a esta 
suma geométrica. Para cualquiera otro vector sucederá lo 
mismo, es decir, el vector momento será perpendicular a la 
suma geométrica; si todos los momentos son perpendiculares 
a la suma geométrica, están en un plano perpendicular a la 
misma, el que contendrá el momento resultante que será, por 
tanto, perpendicular a la suma geométrica. Caso ya analiza­
do en que el sistema se reduce a un solo vector equipolente 
a la suma geométrica y que pasa fuera del centro de re­
ducción.

Analíticamente

Sean los vectores P,, P„, Pn de mismo sentido y los 
vectores P ', ,  PL, P rm de sentido contrarío.
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Sí a, ,j, y son I°s ángulos que los vectores P  formancon los ejes coordenados, (a + 1 8 0 ° ) ,  (¡3+180°), (v+180°)
serán los ángulos que los vectores P ' forman con los ejes mencionados.

X, =  P,cosa
Los vectores P  tendrán como componentes Y, =  P , cos  j

' z ,  =  P lCosy
Los vectores P '  tendrán como componentes

X /  =  P / c o s  ( a + lo O )  =  P / x ( — eos a) =  — P /c o s  a
Y /  =  P / c o s  (,3+180) =  P / .  ( - e o s  ¡3) =  — P /c o s  ¡3
Z /  =  P /c o s  (y + 1 8 0 )  =  P / .  (— eos y) =  — P /c o s  y

Por lo tanto, las componentes de R o sea X, Y, Z se
obtendrán medíante LX, LY, LZ, para obtener las cuales se 
multiplicarán los eos a, eos ¡3, eos y» P or cada uno de los
vectores tomando en cuenta sus signos, es decir P  positivo y
P* negativo y las expresiones de las componentes de R serán:
R x  =  X  =  2 X 1 == 2 + cosa — S P /c o sa

— cosa(SP,— 2 P / )  =  cosaSP
R y =  Y =  2Y j =LP,cos¡3  — ZP/cos¡3

=cos,3(£P1 — S P / )  =  cos[3SP
Rz =  Z =  SZ, =  S P .cosy — S P / cosy

=  cosy^ P ,  —  S P / )  == cosySP 

La suma geométrica
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como: eos2a -f- c o s2¡j -f- co s2y =  \ ;

R  =  ] /  ( 2 P ) 2  =  S P

es decir la suma geométrica tiene como magnitud, la suma al 
gébríca de los vectores componentes.

Los ángulos a, b, c, que forma R con sus componentes se 
gún los ejes coordenados están dados por las fórmulas

X  e o s  d  l ' P  
eos a =  —  = --------  — eos a

Y  e o s  ¡3 l ' P  
eos b =  —  =     =  eos p

e o s  7 -  Peos c =  r - =   vp =  eos y

de donde se deduce que los ángulos de la Resultante son los 
mismos que los de la dirección común de los vectores para­
lelos.

Momento resultante

Busquemos las expresiones Gx, Gy, Gz, aplicando las 
fórmulas generales:

Gx =  Z (yZ  — z Y )

=  ZyZ  — ZzY  

=  Pcosy — 2,zPcosP 
=  cosy-o?P — cosfJS^P

Gjy — cosaS^rP — cosySxP
Gz =  cospSxP — cosaSyP

Sí aplicamos la expresión del producto de dos vectores, 
tendremos, siendo (-) el ángulo que forman la suma geomé­
trica y el momento resultante,



R. G. eos 0  == RrG* -f- RyGy -f- R^G^.
R iG r  =  cos^-P  [cosy-yP — cosf£2jsP] o bien 
RxGx =  coszcosy-P-yP  — cosacos¡j-P-zP 
RyGy =  cosFcosaSPSzP — cos[jcosy-P-xP 
RzG z  =  cosycos¡3~P^xP — cosycosaSPS y P  

sumando miembro
RxGz RyGy -f- R^G# =  O

es decir:
R. G, eos 0  =  0

como» de manera general
G =7̂ =0 y R =/= O

tendremos que
cos0 =  0 ;  es decir 0  =  90°

o sea, analíticamente encontramos que el ángulo formado pol­
la suma geométrica y el momento resultante, es recto; los 
dos vectores son perpendiculares y por tanto, el sistema se 
reduce, en general, a un solo vector que pasa fuera del cen­
tro de reducción y que es equipolente a la suma geométrica 
de traslación.

Casos particulares

R =/= o y G =  O
el sistema se reduce a un vector igual a la suma algébrica 
y pasando por el centro de reducción;

R =  O con G =/= O
el sistema se reduce a un par de eje perpendicular a la dic­
ción común de los vectores paralelos.

.344 A N A LES  DE L a
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Sistema nulo

Cuando R =  0  y G =  0  o sea un sistema nulo, las 
ecuaciones son

4

R r  =  cosa-P  =  O o sea =  O 
para cualquiera de los componentes.

de Gx =  Gy =  Gz =  O

S * P  Z y P  Z z Pse saca -------  =  ----- =  ---------eos a eos p eos y

Consideremos el vector P  referido a los ejes coordena­
dos y examinemos lo que representa el producto P X ^ ;  es­
te producto es el de un vector P  por la distancia z a un
plano xoy, de su punto de aplicación.

•  • *  * ,  . .  .  # • «
» • .*» •

Momento con relación a un plano

Se llama momento de un vector con relación a un plano 
el producto del vector p.or la distancia del punto de aplicación 
al plano, distancia llamada brazo de palanca.

Sí consideramos la., expresión anterior
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^ x P  =  ± y P  =  Z_zP
eos a eos p eos y

vemos que la suma de momentos con relación a los planos 
coordenados

^ p t ^ P ,  í : ^ p ,
de vectores paralelos que forman un sistema nulo, son pro­
porcionales a los cosenos de los ángulos a, p, y que los vec­
tores forman con las perpendiculares bajadas a los planos 
coordenados, o sean con sus brazos de palanca.

Centro tle vectores paralelos

Un sistema de vectores paralelos admite en general una 
resultante única colocada en un punto A fuera del centro de
reducción. Sí llamamos x\ y\ z las coordenadas de aquel
punto y R í a  resultante; en el punto A colocamos un vector
— R que con el vector R dará un sistema nulo; pero, como
R reemplaza al sistema de vectores paralelos, es evidente que 
obtendré también un sistema nulo sí al sistema de vectores
añado un vector — R colocado en el punto A de coordena­
das x y z \  A este sistema nulo puedo aplicarlo las propor­
ciones encontradas antes:

— x 'R  +  ^  *p =  — y R +  Z y P  =  — z R  +  SzP 
eos a eos p eos y

ahora bien, el punto A de coordenadas x y z que es centro de 
vectores paralelos de dirección definida por los ángulos a, p, y y, 
puede ser centro de los mismos vectores cualquiera que sea 
la dirección común si anulamos los numeradores es decir

A N ALES DE LA
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de donde
xT

Ÿy

t2

v y  P

í ; * p
>:p

^ x P  ^ x P
R ^P

expresiones que nos dan las coordenadas de este punto es­
pecial que se lo llama, centro de vectores paralelos.

Caso particular de dos vectores

En los puntos A y B del espacio, tomamos dos vecto­
res P y Q paralelos y de mismo sentido.

Sí aplicamos la ecuación
R =  S P

tendremos
R = P +  Q

y como P  y Q tiene el mismo signo,
R >  P; R >  Q.

Tomemos la recta AB como eje ox y A como origen 
de coordenadas y observemos que las coordenadas corres­
pondientes a y, z, son nulas por estar los puntos A y B
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sobre el eje de ox, luego C se encuentra sobre el mismo eje. 
La relación de momentos con relación al plano yA z  nos da:

_A_B X  Q . AC AB
R ’ Q  R

como R >  Q; AB >  AC
el punto C de aplicación se encuentra entre A y B.

Además

AB AC AB — AC CB
R Q R — Q P

que se define así,
R P  Q

AB CB AC

Los puntos de aplicación A, B, C, de dos vectores pa­
ralelos y de su resultante definen 3 magnitudes ligadas a los 
vectores, de tal manera que cada vector es proporcional a la 
distancia de los puntos de aplicación de los otros dos vec­
tores.

O b s e r v a c i ó n

Sí en lugar de tener dos vectores P  y Q, tenemos el 
vector R  aplicado en C, podemos descomponerlo en dos vec­
tores aplicados en A y B, medíante las ecuaciones

R =  P  +  Q

P  Q  R  
CB — AC — AB

AC +  CB =  AB.
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Sí los vectores son de sentido contrarío, podemos bus­
car su resultante de la manera siguiente, aplicando lo dedu­
cido en la observación anterior.

rU.
i i

C

Pi.í»40

Sea un vector P  aplicado en A y — Q aplicado en B.
El vector P  lo descomponemos en dos vectores Q y 

P  — Q =  R aplicados en B y en un punto C, de tal mane­
ra que

P Q P  — Q R
CB AC CB — AC AB

el punto C queda determinado; en el punto B tenemos dos 
vectores Q y — Q que se destruyen y en el punto C que­
da la resultante R =  P  — Q.

Comparando los dos casos anteriores podemos genera­
lizar en esta forma:

Tres  puntos A, B, C, en línea recta son los de aplica­
ción de tres vectores paralelos de los cuales el punto C es
el de aplicación de la resultante R.

Siempre tendremos las ecuaciones
R =  P  +  Q

tomando en cuenta los signos y

P  Q R
BC AC AB

sí los vectores son del mismo sentido, el punto C está entre 
A y B; si son de sentido contrario, el punto C queda fuera 
de AB y del lado del mayor en valor absoluto.
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O b s e r v a c i ó n

Sí los vectores P  y Q son de igual magnitud
R =  P  — Q =  O,

es decir, tenemos un par.
El punto de aplicación C está definido por la ecuación:

a b  x Q  a b  x Q
R

Cuando los dos vectores de sentido contrarío forman un 
par, el punto de aplicación de la resultante se encuentra al 
infinito.

De lo que se deduce que un par no puede reducirse a un 
solo vector.

Construcción gráfica
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Para encontrar gráficamente los puntos C de aplicación 
de la resultante, la construcción de las figuras 46 y 47 nos 
índica el método.

a) Cuando los vectores son del mismo sentido: en A se 
toma AA' =  Q y en B se tomará BB' =  P, pero en sentido 
contrarío. La recta A 'B ' determina C.

b) Para vectores de sentido contrarío: en A se pone 
AA' =  Q; en B se pone BB' =  P, ambas longitudes del 
mismo lado. La línea A 'B ' determina el punto C.

Los triángulos semejantes AA'C y BB'C en el primer 
caso y los triángulos semejantes AA'C y BB'C en el segundo 
caso nos probarán que el punto C es el de aplicación de la 
resultante.
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A P E N D I C E
•  •

Producto de sumas vectoriales

Al tratar de la composición o reducción de vectores pa­
ralelos, hemos visto que el producto R x Gx cos0 era nulo, 
deduciéndolo de la suma de productos parciales de las com­
ponentes de R y G.

Aun cuando esta deducción depende del estudio del aná­
lisis matemático, vamos a desarrollarlo apoyándonos en la 
teoría vectorial y en la definición del producto de vectores.

A

Hemos visto que si dos vectores P  y Q forman un án­
gulo 0, el producto de estos vectores es igual a

p  X  Q X  eos 0

Ahora bien, si consideramos la cantidad: Q eos 0; no es 
otra cosa que la proyección de Q sobre P  y diremos que 
el producto es igual al vector P  multiplicado por la proyec­
ción de Q sobre P. Así mismo el producto definido puede 
presentar esta forma equivalente Q X  P cos ® Y como P  eos 0
es la proyección de P  sobre Q, vemos que la expresión ge­
neralizada es la siguiente:
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E l producto de dos vectores es igual al primer vector, 
multiplicado por la proyección del segundo vector sobre el pri­
mero.

Supongamos que el primer vector es O y, el segundo P es
una suma geométrica de vectores P, -|- P , -f- P.,; el producto 
de estos vectores será

Q X  proyección sobre Q de (P ,  -)- P 2 -|- P3) 
es decir

Q X  Pcos© =  Q X  P.COS (X X  Q r P J
+  Q X P , c o s  (Q ,P 2)
+  Q X  P,cos (Q ,P ,)

cualquiera de las expresiones del segundo miembro representan 
los productos parciales de Q y de los diferentes componentes 
de P t es decir, encontramos la propiedad de la multiplicación 
algébrica que dice: para multiplicar una cantidad a por una 
suma b, c, d, multiplicamos a por cada uno de los su­
mandos b, c, d y sumamos los productos parciales

ab —}— ac “j-  ¿je/..

Producto de sumas geométricas o vectoriales

Consideremos las sumas parciales encontradas en el caso 
anterior y llamémoslas
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A, =  Q X  P, cos (Q, P ,)  
A, == Q X  Po eos (Q, P,) 
A, =  Q X  P 3 eos (Q, P,)

La primera representa el producto de Q por P x; pero sí 
Q está formado por la suma vectorial

Qi +  Q> +  Qi +  Q i*

encontramos el caso anterior y
A, =  Q, X  Pi eos (Q lt P J  +  Q , X  P-, eos (Q „  P.)

+  Q , X  Pt eos (Q,, P ,)
-1- Q:; X  P t COS (Q „  P ,)
+  Q , X  P, eos (Q „  P .)

Aplicando lo anterior a A., y A., encontraremos el pro­
ducto total

P  X  Q X  eos 0  ■== ^ Pn X  Q ni eos (Pn, Qm)
llamando Pn un vector cualquiera de los que componen el 
vector P, y Qm cualquiera de los que componen el vector Q.

2PnQ m  eos (Pn, Qm)
significa la suma de todas las combinaciones posibles, dos a 
dos, de cada uno de los vectores

P,, P.2, Pn
con cada uno de los vectores

Qi» Qo» Q.i» Qm.
Con lo cual queda demostrada la generalización absoluta 

de la multiplicación aplicada a los vectores.



A N A LES  D E LA

Refiriéndonos a ejes coordenados rectangulares, llame­
mos X ,,  Y ,, Z,, las componentes del vector P  Y X „  Y 0, Z, 
las componentes del vector Q.

Aplicando las propiedades anteriores, tendremos la ex­
presión del producto de P por Q.
P  X  Q cos t)  =  X ]X 2cos(Xj , X 2) +  X 1Y 2cos(X 1, Y 2)

-f- X 1Z,cos(X 1, Z 2)
+  YjXoCosCY,, X 2) +  YjY^osCYj, Y 2) 

+  Y 1Z2 cos(Y,, Z2)

+  Z,X.2cos(Z,, X ,)  +  Z , YoCos(Z,, Y ,)
+  Z, Z ,cos(Z„ Z,)

los cosenos (X,, X.,), (Y,, Y.,) y (Z , , Z,) son iguales a ± 1 
por tratarse de componentes de una misma dirección.

Todos los otros cosenos son nulos porque las compo­
nentes son perpendiculares, dos a dos; los productos son, por 
tanto, nulos.

La expresión analítica del producto vectorial es pues
P X  Q X  eos 0  =  X, X ,  -|- Y J Y , +  Z, Z,

que es lo que queríamos establecer.


