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C A P I T U L O  V I I

Esfuerzos cortantes y momentos de flexión

P r e l i m i n a r e s

*

5 8 .— Fibra neutra o medía. Es la línea recta o curva 
formada por los diferentes centros de gravedad de las seccio­
nes elementales del cuerpo. Así en la fíg. 56 la línea AB es 
la fibra neutra.

El área plana generatriz del cuerpo, es la sección trans­
versal. En la fíg. 56, mn es una sección transversal.

En las construcciones en general, es usual considerar a la 
fibra neutra en un solo plano, y las fuerzas que actúan sobre 
el cuerpo están situadas en el plano de esta fibra.

5 9 .— Sea un cuerpo cualquiera AB, en el que actúan di­
ferentes fuerzas: R t, R.2, F lt F.2, 
que se hacen equilibrio, fíg. 56.

Supongamos por un momento 
que este cuerpo se divide en dos 
partes, por medio de la sección 
mn, normal u oblicua a la fibra 
neutra. La parte de la derecha D 
del cuerpo puede suprimirse o qui­
tarse del de la izquierda I, siempre 
que apliquemos en todos los pun­
tos de la sección mn, fuerzas igua­

les a las acciones que estos puntos sufren de la parte de D. 
Se puede constatar que, si el seccionamiento se hace efecti­
vamente, y que a pesar del contacto que se establezca, des­
pués de la operación entre las dos partes, no se manifiesta ya 
ninguna acción entre ellas.

Estas acciones son las que se denominan fuerzas elásticas 
o interiores y no se ejercen, de una manera sensible sino a dis­
tancias muy pequeñas, y se puede, por consiguiente, admitir
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que la sección mn contiene todos los puntos de aplicación de 
estas acciones.

Por lo expuesto, hay que hacer una salvedad: cuando de­
terminábamos las reacciones de los apoyos, aplicamos las 
reglas de la Estática, como si se tratase de un sólido invaria­
ble, permitiendo, por lo tanto, desplazar los puntos de apli­
cación de las fuerzas a lo largo de su línea de acción; a fin 
de hacer las composiciones que pueden ser útiles para la so­
lución de los problemas. Mientras que cuando se trata de
las fuerzas elásticas, vemos que no es posible el desplaza­
miento en su línea de acción, pues los puntos de aplicación 
son fijos.

Un ejemplo nos aclarará este principio:
Consideremos fíg. 57, que AG represente un 

alambre suspendido en uno de los extremos, en 
G por ejemplo; si hacemos que en el punto B 
actúe una fuerza de arriba hacia abajo, la parte 
GB será la única parte que trabaje, haciendo equi­
librio a la fuerza, sufriendo por lo tanto una ex­
tensión; mientras que la parte AB no trabajará, lo
que sucedería sólo en el caso de cambiar el punto
de aplicación de la fuerza de B a A.

4 » * / .  # /  f t .  / / / / / / # »  f  
 _______________

8
A

f,8 ,71

6 0 .— Análisis de las fuerzas elásticas, Consideremos 
una pieza prismática, por ejemplo una viga AB, fíg. 58. H a­
gamos una sección mn, en un punto cualquiera de la viga,

fig. ^6
R, m

B
n

normal a la fibra neutra y no como antes que podía ser in­
clinada.

Sea R, y R., las resultantes de las fuerzas exteriores 
aplicadas en la parte de la izquierda y de la derecha de la 
viga. La fuerza R, se puede trasladar al centro de gravedad 
de la sección mn, siempre que añadamos el par de traslación, 
cuyo momento es iM, e igual a la suma de los momentos de 
las fuerzas aplicadas a la izquierda, con relación al centro de 
gravedad de la sección.
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Ahora, la fuerza R,, resultante de las fuerzas exteriores 
de la izquierda, hace equilibrio a las fuerzas elásticas que se 
desarrollan en la sección mn, de la acción que resulta de la 
parte D sobre la I. Y como las fuerzas elásticas debidas a 
la acción de la parte I sobre la D son iguales y de sentido 
contrarío a las precedentes, se deduce que las fuerzas elásti­
cas que se ejercen en la sección mn por la parte I sobre la D, 
tienen la misma resultante aplicada en el centro de gravedad y 
un mismo par; ambos son iguales al de las fuerzas exteriores 
que actúan en la parte de la izquierda I.

La resultante de traslación R, al centro de gravedad de 
la sección mn, puede reemplazarse por su proyección, N, so­

bre la fibra neutra, es decir, perpendicu­
lar a la sección y por su proyección C 
sobre el plano de la sección, fig. 59.

La componente N  se llama esfuerzo 
normal. La componente C se la deno­
mina esfuerzo cortante.

El momento del par de traslación puede igualmente
descomponerse en dos, proyectando sobre los dos planos: el 
de la sección y el plano de la fibra neutra.

La proyección en el plano de la sección que tiende a 
torcer el cuerpo considerado, se llama a causa de esto, par 
de torsión y su momento común es el momento ae torsión.

La proyección sobre el plano de la fibra neutra dá un
par que tiende a romper el contacto de las dos partes del
cuerpo considerado. Se les llama par de flexión y su mo­
mento, momento de flexión.

En el caso general de las construcciones, las fuerzas ex­
teriores están todas en el plano vertical que contiene la fibra 
neutra. En este caso la proyección que dá el par de torsión 
es nulo y por consiguiente su momento.

Además de esto, las aplicaciones más frecuentes son las 
relativas a las vigas rectas, cuya fibra neutra es una línea 
recta y que está sometida a fuerzas normales a esta fibra.

Para estas piezas, el esfuerzo normal desaparece, y no 
queda sino el esfuerzo cortante y el momenta de flexión.
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De donde resulta que, el momento del par de flexión en un 
punto dado, tiene por valor, el producto de la resultante de 
las fuerzas exteriores, a la izquierda de la sección incluida la 
reacción del apoyo, por la distancia de esta resultante al pun­
to considerado.

Y también, el esfuerzo cortante es la suma de las fuer­
zas situadas a la izquierda o a la derecha de la sección con­
siderada, allí incluidas las reacciones de los apoyos.

El esfuerzo normal es la suma de todas las fuerzas ho­
rizontales, es decir, a la suma de las proyecciones de las 
fuerzas externas, situadas a la izquierda de la sección consi­
derada sobre la tangente a la fibra neutra.

O b s e r v a c i ó n . En la mayor parte de los casos, las sec­
ciones transversales, son figuras geométricas simples que ad­
miten una línea de simetría que pasa por todos los centros de 
gravedad; esta línea que viene a ser, por lo tanto, normal a los 
planos de las infinitas secciones, es la fibra neutra. Para sim­
plificar el trazado, en las figuras que siguen, la viga está re­
presentada por una línea que es la fibra neutra o la línea de 
simetría.

D e t e r m i n a c i ó n  d e  l o s  e s f u e r z o s  c o r t a n t e s  y  m o m e n ­
t o s  DE FLEXIÓN EN UNA VIGA HORIZONTAL SOBRE DOS 
APOYOS.

6 1 .— Sea una viga X Y , en la que actúan tres fuerzas ver­
ticales, ab, be y  cdf con las que trazamos el dinámico y el fu­
nicular; luego se determina las reacciones X  y Y de los apo­
yos, Fíg. 60.

Hagamos un seccíonamíento de la vida en 55. Entonces 
el sistema de fuerzas — X  -f- ab, que actúan en la porción de 
la izquierda de la viga, están en equilibrio con el sistema de 
fuerzas, be, -f- cd, — Y, que están en la porción de la derecha.

Sí se suprime la porción izquierda de la viga, para que no 
se altere el equilibrio, es necesario añadir al sistema que actúa 
sobre la porción de la derecha, la resultante de — X  ab 
y el par de traslación de estas fuerzas a la sección 55.
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De suerte que, las reacciones de una porción de la viga 
sobre la otra se reduce a una resultante y un par.

Hay pues dos resultantes en equilibrio y dos pares en 
equilibrio.

Estas dos resultantes aplicadas en ss, son de sentido con­
trario, y de intensidad común, que expresa el valor del esfuer­
zo cortante en la sección ss.

Además, para otro punto de la viga tomado entre la fuerza 
ab y be, la resultante de las fuerzas de la derecha o de la 
izquierda queda constante e igual a R.

Y también se nota que para cualquier punto de la viga, 
entre X  y ab, la resultante de las fuerzas de la derecha o de 
la izquierda aumenta de la magnitud de ab; mientras que pa­
ra cualquier otro punto situado entre be y cd, la resultante 
de las fuerzas de la derecha o de la izquierda, disminuye de 
la magnitud de be.

Estas propiedades se enuncian así:
1°. El valor del esfuerzo cortante de una viga, en un 

punto cualquiera, está dado por la magnitud de la resultante 
de las fuerzas, tomadas indiferentemente, a la derecha o a la 
izquierda de este punto;
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2o. El valor del esfuerzo cortante no varía para todos 
los puntos situados entre dos fuerzas consecutivas;

3o. El valor del esfuerzo cortante, más allá o más acá
de una fuerza, disminuye o aumenta de la magnitud de esta
fuerza.

Según esto tracemos el diagrama representativo del esfuer­
zo cortante para todos los puntos de la viga, fig. 59.

El valor del esfuerzo cortante entre X  y ab■ es el valor
de la reacción en X. Sobre una línea cualquiera, paralela a 
la viga, sea la mn y a partir del punto m> se levanta una ver­
tical mo de longitud igual a la magnitud de la reacción en X, 
según la escala adoptada. Por el extremo de este vector, 
por o, se traza una paralela a la viga, hasta la línea de ac­
ción de la fuerza ab; pues el esfuerzo cortante no varía. 
De este último punto, de p , el esfuerzo constante varía de la 
magnitud de la fuerza ab; entonces se baja el vector pq igual 
a la fuerza ab y en su sentido.

De q una horizontal hasta r; de este punto r se baja 
una magnitud rs igual a be.

H ay que notar que en este punto, r, se pasa de la re­
gión superior de mn a la inferior; el esfuerzo cortante cambia 
de signo, cortando al eje mn.

Y así se sigue sucesivamente para las demás fuerzas, 
hasta llegar al punto n.

Si el trazado está bien hecho, del punto v  se debe llegar 
al punto 72, trazando la magnitud de la reacción en Y. Para 
facilitar el trazado, el dinámico se pone en lugar conveniente 
de manera de proyectar las magnitudes de las fuerzas, como 
está en la fig. 60.

El diagrama representativo de los esfuerzos cortantes es 
el área mopqrstuvn, que está sombreada.

Para conocer el esfuerzo cortante en un punto cualquiera 
de la viga, es suficiente bajar, por este punto, una perpendicu­
lar, hasta que encuentre el perímetro del área. Así el vector 
a(j, medido a la escala de las fuerzas, dá el esfuerzo cortante 
para el punto ss.

Ahora nos queda por considerar, el par de traslación de 
la resultante de las fuerzas situadas a la derecha o a la izquier­
da de la sección.

Estos dos pares, de la derecha y de la izquierda, tienden a 
romper el contacto de las dos porciones de la viga; estos son
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los pares de flexión, que están en el plano de la fibra neutra y 
como están en equilibrio, tienen el mismo momento.

La resultante de — X  y ab es Rh
El momento del par de traslación de R ' es:

« ^ R '  =  v S X ¿  (O
m . R '  =  y  3 (2)

llamando A a la distancia polar. En la segunda expresión, yo 
se medirá a la escala de momentos.

Estas expresiones son deducidas, al aplicar, lo que hemos 
dicho en lo relativo a momentos estáticos, (pág. 54 y si­
guientes).

Luego para conocer el momento de flexión en un punto 
cualquiera de una viga, es suficiente:

Io. T raza r  en este punto, una paralela a la resultante de 
las fuerzas de la derecha o de la izquierda; es decir, una verti­
cal, puesto que todas las fuerzas son verticales, y comprendida 
entre los lados extremos del funicular;

2o. Multiplicar este segmento por la distancia polar.
La ordenada del funicular se medirá a la escala de las 

fuerzas y la distancia polar a la escala de longitudes o vice­
versa.

De donde se deduce que el funicular constituye el área 
representativa de los momentos de flexión.

Sí se quiere, por comodidad, que el lado de cierre sea 
paralelo a la viga, para medir directamente en cada punto el 
segmento comprendido en el área de los momentos de flexión, 
se procede así: construidos ya el dinámico y un funicular, se 
traza por E (punto que determina las reacciones) una parale­
la a la viga sobre la que se toma un nuevo polo P ',  con una 
distancia polar igual a A. El funicular de polo P f, se cons­
truye, de manera que la misma viga sea el lado de cierre.

%

O b s e r v a c i o n e s . El área de momentos demuestra, que 
todas las ordenadas como y o que corresponden a sus vértices, 
coinciden siempre con las líneas de acción de las fuerzas.

Para encontrar el momento máximo, que es exactamente 
la parte que corresponde en la viga a la sección peligrosa, se 
traza una paralela al lado de cierre por el vértice del área

UN IVERSID AD  C E N T R A L
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que se obtenga la ordenada máxima. A partir de ésta, los 
momentos van disminuyendo hasta anularse en los apoyos

La condición algebraica de máximos en los momentos de 
flexión es dM/dx =  o. Y como se sabe también que 
dM/dx =  C, en la que C es el esfuerzo cortante, se deduce: 
que el momento máximo de flexión, o lo que es lo mismo la 
sección peligrosa, se encuentra en el punto en que el esfuer­
zo cortante cambia de signo, o se anula, y por tanto, corta al 
eje del diagrama.

En la fórmula (1) sí la distancia polar A es igual a la 
unidad de longitud, las ordenadas del funicular dan directamente 
el valor del momento para el punto correspondiente.

H ay  interés para que la misma viga constituya el lado 
del cierre del funicular.

Se puede conseguir, también, la horizontalidad del lado 
de cierre, haciendo la traslación de las ordenadas del funicu­
lar a la línea que representa la viga y sobre cada línea de 
acción.

Luego se une por rectas estos diferentes puntos y se 
obtiene el nuevo funicular.

A p l i c a c i o n e s

6 2 .— Io. Momentos ae flexión y esfuerzos cortantes ae 
una viga simple con carga uniformemente repartida.

Sea la viga de la fíg. 51 de luz / y con la carga p por 
unidad de longitud.

Por la simetría de la carga, las reacciones son iguales 
entre ellas e iguales a la mitad de la carga total: pl/2.

Se sabe que para cualquier sección distante x del apoyo 
izquierdo, el esfuerzo cortante es igual a la suma de las fuer­
zas de la izquierda de la sección.

C — - y -  — px =  p ( y  — x) (1)

Sí C  es la ordenada correspondiente a una abscisa x, 
entonces esta ecuación es la de una línea recta:
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Cuando x =  0   C — pl/2
« x
« x

1/2   C =  0
1   C =  -  pl/2

Luego el diagrama de los esfuerzos cortantes se cons­
truye haciendo gí igual a la luz de la viga, y trazando g f e 
ik igual a la reacción pl/2, y entonces se une f  y k.

El momento de flexión, para un punto x del apoyo iz­
quierdo, es igual a la suma de los momentos a la izquierda 
de la sección:

M = ¿  X -  PX y  =  y P ( l x - X ;) (2)

Esta es la ecuación de la parábola:
para x =  0   M =  0

» x =  \/2  M =  (máximo)O

» x =  1   M =  0
El diagrama de los momentos se construye, trazando mn 

igual a la luz de la viga; entonces se traza la magnitud qr en 
la mitad e igual al momento máximo y entonces se construye 
la parábola tnrn.



3 0 0 A NALES D E  L a
w  S / “

Si la totalidad de la carga fuera concentrada ,en la mitad 
de la viga, AB sería el dinámico y BC y CA las dos reaccio­
nes, de polo P, con una distancia polar A, y el funicular mstu 
De los triángulos semejantes PAC y msq se tiene:

A _  %  I
7 í p> qs

Sí se hace A igual a la unidad, la ordenada:

qs =  £  O)
y como

qr =  £  (4)

se deduce que el momento máximo para una carga concen­
trada en la mitad, es el doble del valor que se obtiene para 
una carga uniformemente repartida.

Este otro procedimiento, para trazar la parábola, suele 
ser a veces más expedito, fíg. 61 a.
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Sea X Y  la luz de la viga y sobre X Y  como cuerda y 
ch, la perpendicular en la mitad de la luz, vamos a dibujar 
la parábola, de manera que sea tangente en los puntos X  y Y.

Se traza primero la línea indefinida X Z paralela a chf 
luego se toma

pl2ch —  2. ce =  —r-.4
Entonces, para determinar un punto de la parábola co­

rrespondiente a un punto cualquiera a, tomado sobre la viga, 
es suficiente trazar ak paralela a ce y por b una paralela a 
la viga, hasta la intersección con X Z, entonces se tiene el 
punto d; este punto se une con el vértice e. El punto de 
encuentro k de de con ak es el punto buscado de la parábola.

Se repite el mismo trazado para cualquier otro punto de 
la viga, hasta tener un número suficiente de puntos de la pa­
rábola que permíta unirlos por medio de una curva continua.

Las líneas X h  y Y h serán las tangentes en los apoyos 
de la viga, haciendo que ce— eh.

Para trazar la tangente en un punto j  de la parábola, 
se proyecta este punto en m, luego se toma las mitades de 
los segmentos, m Y y mX, por estos dos puntos f  y n se 
trazan paralelas aí eje mayor y se obtienen las intersecciones 
i y g con las tangentes extremas; se une estos puntos que 
es la tangenta buscada.

6 3 .— 2o. Caso particular.— 'Determinar los diagramas de
los esfuerzos cortantes y momentos de flexión para una viga so­
metida a la acción de una carga única F .

En la fig. 62 sea la viga de 6 metros de longitud y una 
carga F  =  1.500 kilos.

En este caso el dinámico se reduce a la magnitud
AB =  F =  1.500 kilos, y el funicular a un triángulo 1-2-3 
que tiene sus vértices en las líneas de acción de los apoyos 
y en la de la fuerza F.

Por comodidad se hace la distancia polar igual a un nú­
mero entero de la unidad de longitud, digamos 2 metros.

Con el polo P, se ha trazado el funicular de lados 1, 2 
y 3; la paralela al lado de cierre 3 trazada por P  da la mag­
nitud de las reacciones:

UNIV ERSIDAD C E N T R A L
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CA =  X  =  875 kilos y BC =  Y  =  625 kilos.
Este funicular representa el diagrama de los momentos 

de flexión, a causa de la carga F. Se observa que la or­
denada máxima, o sea el momento máximo tiene lugar bajo 
la carga F  y es igual a h —  1.090 kilos multiplicado por

la distancia polar:
¿Mm =  1.090 X  2 =  2.180 km.

Verificando por la expresión analítica da:

¿flfm =  F a ( 1  ~  a )_ '- 5 0 0 X 2 , 5 ( 6  2 . 1 8 7 km. ( 1 )1 6
la diferencia depende de la apreciación con la escala, al me­
dir la ordenada.

En la expresión anterior a es la distancia de la carga al 
apoyo izquierdo; / la luz o longitud de la viga.

También el valor de las reacciones se puede comprobar 
por la fórmula:
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Con estos valores se proyectan los extremos de las fuer­
zas del dinámico para tener el diagrama del esfuerzo cortan­
te, que es el área poligonal X 'R S T U V Y '.

Se observa que cuando el esfuerzo cortante cambia de 
signo o pasa por cero, sobre esta vertical está la ordenada 
máxima del momento de flexión. Esto se puede probar tam­
bién analíticamente, en efecto:

Para a <  x; es decir, cuando la fuerza F  está entre el 
punto M y el apoyo izquierdo, el momento es:

m
F. x  (1-a ) 

1 ( 0

y la derivada de esta expresión dará el esfuerzo cortante C:

¿ m
d x d F. x  (1 -a )  

1
F (1-a)  

1 C

y para x "> a, el momento es:

(5)

m
F. a ( í -x )  

1
y la derivada es:

C F. a 
1

(6)

(7)

Las expresiones (5) y (7) son idénticas a la (2) y (3); 
esta última cambiada de signo, que es el esfuerzo cortante 
negativo.

Se observa también que el momento de flexión máximo, 
se produce siempre bajo el punto de aplicación de la carga.

En efecto si tomamos otro punto de aplicación de la 
carga, el N  por ejemplo: la línea representativa de los mo­
mentos de flexión es también un triángulo, el X V Y , fig. 62-a. 
Este triángulo tiene siempre por base la luz de la viga y por 
altura la expresión (1).

En este trazado hemos hecho, que el lado de cieñe sea 
siempre horizontal; para lo cual el polo se tomará sobre la 
horizontal trazada por el punto que determina las reacciones,
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pues éstas cambian en relación con la posición de la carga. 
En efecto, tomaremos la misma distancia polar del de la fíg. 62; 
así las ordenadas mediremos a la misma escala. Se ve que 
las ordenadas bajo el punto M son iguales en las dos figuras, 
puesto que la posición de la carga es la misma.

fíg. 62-q

Si la carga se desplaza, la fórmula (1) índica que el 
vértice V describe una parábola y el mayor de los momentos 
se produce en la mitad de la luz, siendo su valor el ya cono­
cido:

F  1
m = \ j T = — t —4

La parábola la trazaremos según el método indicado en el 
N°. 62; haciendo

F  1U T  =  - L f i .4

Entonces el diagrama representativo de los momentos de 
flexión, para una posición cualquiera N  de la fuerza F, se en­
cuentra bajando una vertical por este punto hasta que encuen­
tre la parábola; luego se une este punto a los apoyos y el trián­
gulo X V Y  será la línea buscada.

Ya tendremos ocasión de aplicar estos conocimientos 
cuando hablemos de cargas móviles.
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6 4 .  3o. Caso particular. Encontrar los diagramas de
los momentos de flexión y esfuerzos cortantes para una viga de 
dos apoyos libres, en la que se aplica una carga uniformemente 
repartida, sólo en una parte de la longitud

fiq b j

Sea la viga X  Y de longitud /; a partir del apoyo X  tie­
ne una carga uniforme de longitud x.

Para obtener el diagrama de los momentos de flexión se 
opera como en el caso precedente. Se traza la carga concen­
trada en la mitad de la zona cargada y equivalente a la carga 
uniforme. El dinámico ABCA y el funicular correspon­
diente. que se reduce a un triángulo es mont cuyo lado de cierre 
es mn.

Las proyecciones de los extremos de la carga uniforme 
sobre el funicular, dan los puntos de tangencia m y q de la pa­
rábola, que es la curva que limita en el diagrama de mo­
mentos, para esta clase de carga; que se la traza según el 
procedimiento ya conocido. La ordenada máxima es que 
debe estar en la misma vertical donde el esfuerzo cortante es 
nulo.

Asimismo, para el diagrama de los esfuerzos cortantes 
se procede primero como sí fuera carga concentrada; después 
se hace la modificación correspondiente proyectando la zona 
de carga uniforme hasta que intercepte al diagrama, luego se 
une estos puntos por medio de una recta. El área superiores 
positiva y la inferior negativa.
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6 5 .— Aplicación.— Sea una viga de 7 rn. de luz, sobre la 
que actúa cargas parciales y uniformes de 2,00 m. y 2,SO m. de 
longitud y de intensidades de 800 a Í.000 kilos por metro lineal; 
situadas en cada extremidad de la viga. Vamos a trazar los 
diagramas de momentos y de esfuerzos cortantes.

Se encuentra primero las reacciones de los apoyos, con­
siderando a las cargas como concentradas en la mitad de cada 
Zona y valiéndonos de un funicular de polo arbitrario; la pa­
ralela al lado de cierre, trazada por el polo P, nos determina el 
punto D. en el dínámír:; de manera que, fig. 63 a.

X  =  J.820k.; Y  =  2.280 k„
Para el cálculo anterior, se necesitaba del funicular que a 

la vez nos representa también el diagrama de momentos. 
En éste haremos las modificaciones correspondientes a car­
ga repartida. Por los extremos de las zonas cargadas, se 
bajan verticales que cortan al funicular en dos puntos que

2 5¡ooi i li

L o n g itu d  1 :1 0 0  
E s c o l a s :  P u o r z a s  Ic^ - IO G O K
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son los de tangencia de la parábola. La curva deberá estar 
comprendida entre estos dos puntos; tal como claramente se
ve en la fíg. 63 a.Así queda completamente definida el área de momentos,
la que está sombreada.El momento máximo se encuentra sobre la vertical tra­
zada por el punto donde el esfuerzo cortante pasa por cero, 
que ocurre a los 4,75 m. del apoyo izquierdo y su valor es
¿M =  2.600 km.

El diagrama de los esfuerzos cortantes se han trazado 
por los métodos conocidos, con ayuda del dinámico que se 
le sitúa en lugar conveniente.

El esfuerzo cortante máximo, se presenta en el apoyo 
derecho y cuyo valor es de 2.230 k., igual al valor de la 
reacción de este apoyo, y e0 de signo negativo.

6 6 .— Caso en que la carga no está repartida uniformemen­
te, sino que va aumentando sucesivamente de un punto de valor 
de cero a otro de valor máximo.

Estas cargas se presentan cuando se trata de la presión 
de tierra o cualquier otro material pulverulento.

Sea una viga de 8 m. de luz y soporta arena en talud 
natural de 3:í.

Distan entre sí las vigas de 0,80 m. La densidad de las 
tierras es de 1,60. Encontrar los diagramas de momentos de 
flexión y esfuerzos cortantes, fíg. 63 b.

La repartición de las cargas se índica en la figura, por 
el triángulo V X Y . Los demás datos numéricos constan en 
la figura.

El peso total que gravita sobre la viga es:

— -— 2^  X  0.80 X  L600 =  13.670 kilos.

Como no es uniformemente repartida la carga, se divide 
el triángulo V X Y  en fajas estrechas; para concretar ideas 
hemos dividido en 8 fajas de 1 m. de ancho. Cada una de 
estas figuras así descompuestas son trapecios y la última un triángulo.

Se averigua las áreas de estos trapecios y luego multi­
plicando por la densidad se encuentra el peso. Entonces se
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determina los centros de gravedad, por medio de los métodos 
indicados en las págs. 31 y 32.

En estos centros de gravedad actúan los pesos corres­
pondientes a cada trapecio.

En el caso presente, para simplificar los cálculos, hemos 
hecho igual a la base media respectiva; puesto que tienen la 
misma altura y profundidad.

Con estas bases medías hemos trazado el dinámico 
A B  I y el funicular de polo P. La distancia polar es
de 1,5 m.

La paralela aí lado de cierre, trazada por P  nos deter­
mina las reacciones,

H Escalos 
L ongifud I IOO 
F u e r  ¿ a s

X  =  8,970 k.j Y =  4.700 k.
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Después se hacen las modificaciones del funicular para 
carga repartida; que en este caso el área de momentos está 
limitada por una parábola cúbica.

El diagrama de los esfuerzos cortantes se construye pro­
yectando las divisiones de la carga hasta que se corten con 
las horizontales trazadas por los extremos de los pesos del 
dinámico. La figura explica muy bien por sí misma.

La línea que limita el diagrama de los esfuerzos cortan­
tes es una parábola cuadrática.

El momento máximo de flexión se encuentra, sobre la 
vertical trazada por el punto donde el esfuerzo cortante se 
anuía. Este punto dista del apoyo izquierdo 3,25 m.

La ordenada máxima mide 28 m/m. Como la escala del 
dinámico es 1 centímetro por 2,5 metros cuadrados, tendremos;

I =  2,8 X  2,5 =  7,00 m-.

luego el momento máximo vale:

3V[ =  7 X  0,8 X  L600 X  1,50 =  13.440 km.

El esfuerzo cortante máximo ocurre en los apoyos y es 
igual a las magnitudes de las reacciones de los apoyos, con 
su signo respectivo: es positiva el área que está sobre la hori­
zontal y negativo la que está bajo esta línea.
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6 7 .— 5o. Momentos de flexión y esfuerzos cortantes pa­
ra una viga salidiza en ambos extremos y sometida a cargas 
concentradas.

Sea la viga X Y , en la que actúan las cuatro fuerzas re­
presentadas en la fíg. 64.

La primera fuerza ab y la última de, están aplicadas en 
los extremos volados de la viga.

Las intersecciones del primero y último lado del funicu­
lar con la vertical de los apoyos, determinan el lado de cierre, 
y una paralela a esta línea por el polo nos dá las magnitudes 
de las reacciones X  y Y.

El diagrama de los esfuerzos cortantes se traza, líe/ando, 
a partir de una línea horizontal la magnitud de la primera 
fuerza, la ab, hacía bajo, o sea en el sentido de la fuerza, de 
allí una horizontal hasta la línea de la reacción y de este 
punto, hacía arriba, la magnitud de la reacción X, y así su­
cesivamente.

El diagrama de los momentos de flexión, está hecho, con 
el trazado del funicular y su lado de cierre, que forman tres 
áreas diferentes; que se interpreta diciendo que el área que
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está bajo el lado de cierre los momentos son negativos; en 
el caso contrarío, los momentos son positivos. Pero como 
las áreas del funicular pueden cambiar, las de arriba ponién­
dose bajo la línea de cierre y recíprocamente, con sólo cam­
biar el polo P, situándolo al otro lado del dinámico, vale más 
analizar así;

Los esfuerzos cortantes cambian de signo, tanto en los 
apoyos, como bajo la fuerza be y según lo establecido antes, 
se deduce que hay tres momentos máximos. En cualquier 
punto de la viga, a la izquierda del apoyo X, la resultante 
de las fuerzas exteriores (esfuerzo cortante), está dirigida ha ­
cía abajo y actúa a la izquierda del apoyo; engendra, pues, 
un momento negativo. En los puntos de la viga, comprendi­
dos en la región entre X  y m, la resultante tiene su punto de 
aplicación a la derecha y está dirigida hacía arriba; luego 
también engendra un momento negativo.

En los puntos m y n no hay momento: por esto se les 
llama puntos de momento nulo. La deformación de la viga cam­
bia en estos puntos, razón por la cual también se les llama 
a estos puntos, de inflexión.

El área que está entre los puntos m y nt los momentos 
son positivos.

En la figura 64, se ha trazado en líneas de puntos el fu­
nicular con el lado de cierre horizontal; para esto, se dibuja el 
dinámico trasladando las fuerzas en el orden que se las en­
cuentra: de suerte que después de ab, se traza la reacción X, 
en su propio sentido y así con las demás; la distancia polar 
se hace también igual a la primera.

Mas simple es, a partir de una línea horizontal, trasla­
dar las ordenadas del diagrama de momentos en las respecti­
vas líneas de acción de las fuerzas y después se une los
extremos y se tiene un diagrama idéntico al trazado con lí­
neas de puntos en la fíg. 64.

6 8 .— Diagrama de los momentos de flexión y esfuerzos 
cortantes para una viga salidiza en ambos extremos y con car­
ga uniforme.

Io. Caso.—La parte salidiza de la viga es igual en am­
bos extremos y mide 2 m.; la longitud entre apoyos es de 5 
m.; la carga uniforme es de 500 kilos por metro.

UNIVERS IDAD C EN TR AL
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Por ía simetría de la carga, respecto de la mitad de la 
viga, las reacciones X  y Y son iguales, cada una soporta la 
mitad de ía carga total.

Debemos considerar separadamente las cargas repartidas 
sobre las partes UX, X Y  y YV. Las intensidades de las 
cargas son evidentemente proporcionales a ía longitud de ca­
da una de estas partes.

Habiendo así determinado las intensidades de cada una 
de las fuerzas, que consideraremos por lo pronto aplicadas en 
la mitad de cada una de las regiones, construyamos el di­
námico, tomando el polo P  sobre una horizontal. Del pun­
to A de esta horizontal se lleva la fuerza A - B  igual a 1.000 
kilos, porque la carga repartida tiene una intensidad de 500 
kilos por metro y como tiene 2 metros de largo dá 1.000. 
A partir del punto B se lleva la magnitud de la reacción en 
X  =  CB igual a 2.250 kilos, que es ía mitad de la carga
total. Del punto C la magnitud C D igual a 2.500 kilos,
que es la carga sobre la parte intermedia. De D la magnitud
de la reacción Y =  D E igual a 2.250 kilos. Y por fin la
fuerza E A, magnitud de la tercera porción e igual a 1.000 
kilos, que cierra el dinámico.

Se construye el funicular híjkl; teniendo cuidado de tra­
zar estos lados paralelos al respectivo radío polar; fijándonos 
el orden en que colocamos las fuerzas en el dinámico.

Pero como la carga que lleva la viga, es uniformemente 
repartida, hay que hacer las modificaciones convenientes en el 
funicular.

A cada una de las tres porciones en que está dividida la 
viga, por las verticales de los apoyos, corresponde una pará­
bola, tangente en los puntos que las limitan. Los puntos m y 
i, para la parábola que corresponde a la sección U X. Para 
la sección simétrica los puntos k y  n.

Para la región intermedia los puntos í y h son los puntos 
de tangencia.

Se puede también proceder de otra manera: Para lo cual 
se traza primero el diagrama de los momentos de flexión para 
la región intermedia X  Y, con prescíndencía de las dos 
partes voladas, para carga uniformemente repartida y se ob­
tiene el área encer rada dentro de la parábola t o 1i (fígf* 65)*

Luego se pone el valor del momento que la carga sobre la 
viga salidiza ejerce sobre el apoyo, que es igual pl"/2; en Ia 
que p es la carga uniforme por unidad y l es la longitud de
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la parte salidiza. Las dos partes salidizas son iguales, los 
momentos serán también iguales y cuyo valor es de 1.000 km. 
Este valor se traslada a escala a partir de los puntos i '  y K  y 
así se tiene los puntos K  y se une estos puntos por una lí­
nea; entonces se trazan los arcos de parábolas i'r í y h 'r r í Las 
áreas sombreadas son las que repesentan el diagrama de los 
momentos de flexión para este caso de carga.

Por la simple inspección de la figura se notará que las dos 
áreas de momentos trazadas son iguales.

Los momentos máximos se obtienen en los dos apoyos y 
en el medio de la viga.

Los momentos de los apoyos son negativos y valen
íf =  í 'h ' =  gk =  k T  =  L000 km.

0

En momento en la mitad de la viga es positivo y vale
op =  o'p' =  560 km.

Estos momentos hemos medido con la escala de momen­
tos, en la que un centímetro equivale a 1.000 km.

Para la construcción del área representativa de los esfuer­
zos cortantes, se hace, lo que hemos dicho antes por analogía 
en casos de carga uniformemente repartida.

Primero trazamos para las tres fuerzas concentradas y 
se obtiene el diagrama de los esfuerzos cortantes

q' r '  rss' t' tuu' vh
Luego se hace las modificaciones que corresponde a car­

ga uniforme, trazando las lincas q — r, s — t y u — v. Se 
tiene así el área sombreada qrsziuv.

Como antes, las áreas que están sobre la horizontal son 
positivas; las que están debajo negativas.

Se observará que en el punto z, el diagrama de los es­
fuerzos cortantes pasa por cero y luego cambia de signo; la 
proyección de este punto nos dá el punto del momento máxi­
mo. T. ambíén cambia de signo, el esfuerzo cortante, en los 
apoyos que corresponde a momentos máximos negativos.
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6 9 .— 2o. Caso. La parte salidiza es desigual

En la fig. 65 a, consideramos así mismo, una carga re­
partida de 500 kilos por metro.

La luz entre apoyos es de 5 metros. La parte salidiza 
izquierda mide 2 metros y la de la derecha un metro.

La longitud total de la viga, es por consiguiente 8 metros*
Como antes, consideraremos primero como carga con­

centrada en la mitad de cada una de las porciones y vamos 
asi a determinar las reacciones de los apoyos.

La porción izquierda vale 2 X  500 =  1.000 k.
» » intermedia » 5 X  500 =  2.500 k.
» » derecha » 1 X  500 == 500 k.

Tracemos el dinámico A 'B 'C 'D ' con polo arbitrario P* 
y el funicular que se desprende íx m sp  q’ y su lado de cie­
rre h'q'; por P '  una paralela a esta línea y se obtiene el 
punto E f que determina las magnitudes de las reacciones
D 'E ' y E 'A ',  o sea:

X  =  2.400 k.; Y  == 1.600 k.
Conocidas las reacciones tracemos un nuevo dinámico 

ABCDEA, se han tomado las fuerzas en el orden que se en­
cuentran. Por el origen A, se traza una horizontal, sobre la 
que tomamos el polo P  cuya distancia polar es conocida, en 
nuestro ejemplo es un metro.

Dibujemos el funicular de polo P  cuyo lado de cierre es
horizontal. Para  evitar confusiones hemos numerado los ra­
díos polares y los mismos números tienen los lados corres­
pondientes del funicular. Este es el Ihmspqr.

Ahora hagamos las modificaciones en el funicular, últi­
mamente trazado, para carga uniformemente repartida; para 
esto tracemos los arcos de parábola, bajo cada una de las
porciones en que se ha dividido la viga: la parábola Im pa­
ra la porción de dos metros y tangente en estos puntos; la 
parábola mnp, para la región intermedia y tangente en ni y 
p; y la parábola pr para la porción izquierda y tangente en 
los puntos p y r.
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El área sombreada será el diagrama representativo de los 
momentos de flexión para una viga con extremos salidizos y
con carga uniformemente repartida.

Las áreas que están sobre el lado de cierre del funicular
son positivas, las que están bajo negativas.

Se puede también proceder como en el caso primero: T r a ­
zando primero la parábola sólo para la región intermedia, con 
exclusión de las porciones salidizas, para carga uniforme. 
Se tiene entonces la parábola tn 'ríp '; pues la ordenada en la
mitad tiene que ser igual a pl'/8*

Determinemos los momentos en los apoyos a causa de 
la carga en las porciones salidizas; tienen por valor pl?/2 y 
p\\¡2 para la izquierda y para la derecha respectivamente.

Con los valores numéricos nos dá para el primero 
1.000 km.; para el segundo es 250 km. Se lleva sobre 
la vertical de los apoyos estas magnitudes a la escala de mo­
mentos y se obtiene los puntos íi y v '. Se une estos pun­
tos con una recta, pues los momentos no cambian en esta 
región; entonces se trazan las líneas h'i y v'k?. Se trazan 
los arcos de parábolas tangentes a las líneas Vi* y h'i en los 
puntos V y K  para la izquierda; y para la deiecha tangentes 
a las líneas v K  y Kv en los puntos v  y r .

El área sombreada será el diagrama representativo de los 
momentos de flexión para carga uniforme. El área sobre el 
lado de cierre es positiva y las que están bajo son negativas.

El diagrama de los esfuerzos cortantes se traza de una 
manera semejante a los casos anteriores: se proyecta el diná­
mico, que nos sirvió para trazar el diagrama de los momen­
tos de flexión, hasta que corte a cada una de las fuerzas que 
actúan sobre la viga y en sus respectivas líneas de acción para 
cargas concentradas; luego se hace las modificaciones para 
cargar uniformes como hemos hecho ya en otros casos. El 
gráfico explica por sí mismo el proceso.

Los momentos máximos ocurren en tres puntos: en los 
dos apoyos y en un punto más o menos intermedio entre éstos. 
Se observa en los diagramas, que cambia el punto del mo­
mento máximo a medida que una de las porciones salidizas es 
más grande que la otra. Es por esto que el momento máxi­
mo no está en la mitad de la viga; sino en un punto donde 
la parábola tiene la tangente paralela al lado de cierre Ir o h*v\
Ln el caso presente, está a 2,80 m. del apoyo izquierdo, y vale:
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cM =  on X  — 960 X  J — 960 km.
La una magnitud a la escalas de las fuerzas y la otra a 

la de las longitudes; pero en nuestro caso, la distancia po­
lar es igual a la unidad, será suficiente medir las ordenadas 
a la escala de las fuerzas, que es también la escala de mo­
mentos.

Otra manera de obtener el punto de momento máximo es 
el de proyectar el punto donde el esfuerzo cortante es nulo: 
en efecto, en la fig. 65 a, sobre la misma línea de esfuerzo 
cortante nulo, está el momento máximo.

Así mismo los momentos máximos negativos, correspon­
de donde el esfuerzo cortante cambia de signo, o sea en la 
región de los apoyos.

El esfuerzo cortante máximo ocurre en los apoyos. Mi­
damos las ordenadas del diagrama a la escala de las fuerzas:

Para el apoyo izquierdo dá:
antes del apoyo C : = — 1.000 k.

.después del apoyo C = -f" 1.400 k.
Para el apoyo derecho:

antes del apoyo C =  — 1.100 k.
después del apoyo C =  -f- 500 k.

Verifiquemos los trazados anteriores por medio de las 
fórmulas que nos dá la Resistencia de Materiales: 
el momento máximo entre los apoyos es:

5 s— J2+ 2*
5

500 X  2 2 Q¿n t  —  =  960 k.m.

oM m p [l* 1,2+ V " p 1,-__500
8 1

— —

2 8

y está a una distancia del apoyo izquierdo de:
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x r2— E + i ï  
21

2 5 — 1 + 4  
10 2,80 m.

que está de acuerdo con los resultados anteriores.
7 0 . - 4 ° .  Momentos de flexión y esfuerzos cortantes pa­

ra una viga catitílíver; o Lo que es lo mismo una viga empo­
trada en una extremidad y líbre en la otra, con carga unifor­
me y luego con cargas concentradas.

Este caso también estudiemos en conección con datos 
numéricos:

Sea una viga cantilíver de 3 m. de largo y lleva una 
carga uniformemente repartida de 100 kilos por metro; además 
de ésta, actúan también tres fuerzas concentradas de 130, 150 
y 220 kilos a una distancia de 3, 2 y 1 metros, respectivamen­
te, del apoyo.

Tratemos primero sólo con la carga uniforme, luego ha­
remos los diagramas con las cargas concentradas, fíg. 66.

Tracemos el dinámico y el funicular correspondiente a la 
carga uniforme; para lo cual dividiremos la viga en 4 o más 
partes iguales; sea cada división de 0.75 m., y supondremos 
concentrada en la mitad de cada una de estas divisiones, un
peso de 0,75 X  100 =  75 k.

El funicular de estas fuerzas y de polo P  es el ab; por 
conveniencia se toma P  sobre una horizontal y  de distancia po­
lar conocida, sea en el ejemplo A =  2 m. Como se sabe el 
verdadero diagrama de los momentos de flexión es una parábo­
la para carga uniforme, el funicular encontrado está circunscrito 
a la curva y los puntos de tangencia son a y b; las intersec­
ciones de las verticales de los puntos de división con el funicu­
lar son puntos de la curva.

En la práctica, la parábola difiere muy poco del funicular 
y es inútil de trazarla, siempre que las divisiones sean suficien­
temente numerosas. De lo contrario será mejor dibujar la pa­
rábola, para tener resultados exactos.
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Tenemos por la inspección de la fíg. 66, que el máximo 
de los momentos ocurre en el apoyo X Y  y vale:

Stim  =  Yb X  A =  225 X  2 =  450 Kgm.

Yb se mide a la escala de las fuerzas y A al de las longitudes. 
Por cálculos tenemos que el momento máximo es:

I oncji lucí 
f u c r z a 6  I cm

a*  concon lrodcn
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p l 2 1 0 0 X 3  a rn xrcMm =  X — = --------- í ------- =  — 450 Kgm.

Sabemos que el diagrama del esfuerzo cortante para car­
ga uniforme, está limitado por una línea recta; puesto que la 
expresión es:

C =  — px
y el máximo vale

C =  — pl
Esta línea recta se obtiene proyectando las magnitudes de 

cada una de las fuerzas del dinámico sobre las verticales de 
los puntos de división. La línea es ac y el área del esfuerzo 
cortante es acY. Por comodidad se principia el trazado del 
punto a.

Cargas concentradas. Para estas cargas se hace un di­
námico especial y el funicular correspondiente, de la misma 
distancia polar que el anterior, A, (véase en la parte inferior de 
la fíg. 66 con líneas de trazos).

El área gdet es el diagrama de los momentos de flexión 
para las cargas concentradas.

cMm =  de X  A =  455 X  2 =  910 km.
Para tener los momentos totales, es suficiente añadir las 

ordenadas correspondiente de los dos funiculares. Se obtiene 
así el contorno poligonal g f , dibujado con líneas llenas.

El momento máximo total es:
¿Mm =  A (Yb +  de) =  2 (225 +  455) =  1.360 km.
El cálculo dá para el momento total máximo:

* n  =  — Hil — P , X 3 — P.X2  — p, x i =
^ ^  — » 3 0 X 3  — 1 5 0 X 2 — 220X1= 1-360 km.
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Los esfuerzos cortantes para cargas concentradas, sabe­
mos ya encontrar, proyectando los extremos de las fuerzas; 
en la figura está en línea de puntos.

El diagrama de los esfuerzos cortantes totales se obtiene 
haciendo la suma de las ordenadas de los dos diagramas que 
hemos trazado; resulta así el contorno en gradería i h. El es­
fuerzo cortante máximo es:

Cm =  dh =  800 kilos.
Se puede proceder también simultáneamente, considerando 

las fuerzas repartidas y las concentradas para obtener un solo 
diagrama de resultados totales, trazando un dinámico y 
un funicular. Para esto, se toma como punto de división de 
la carga repartida el de la línea de acción de la fuerza con­
centrada; aplicando en la mitad del espacio comprendido entre 
dos fuerzas y de magnitud proporcional a éste. Luego se 
procede como en los casos ordinarios.

7 1 .— Nota. Frecuentemente los alumnos se preguntan 
¿qué utilidad tiene este alor del momento máximo de flexión? 
Por eso, aunque no corresponde a nuestro estudio, daremos 
el uso que se hace:

El momento máximo total es 1.360 kgm. Con este va­
lor vamos a determinar la sección transversal de la viga de 
madera para las condiciones del ejemplo. La resistencia prác­
tica de la madera es 50 k/cm".

La conocida fórmula de la flexión es:

M í
R ~  c

en la que M es el momento máximo de flexión; R la rcsís 
tencía máxima admisible; I el momento de inercia de la scc 
cíón transversal; c la distancia de la fibra más remota. 

Sustituyendo valores tenemos:

M = JL=   _ q  QQ2 7 2R c 5 0 X 1 0 '  u’u u z /z
que es el valor del módulo de resistencia de la viga.
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Hay una infinidad de secciones que pueden corresponder 
a este valor, por esto es necesario fijar la forma y la altura
de la viga para determinar el problema.

Sí suponemos, después de las consideraciones de la cons­
trucción, que la viga puede estar formada por una sección 
rectangular, en la que su ancho y su alto deben estar en la 
proporción de 5 a 7, que es la viga más resistente; se tiene de­
signando por h y b la altura y el ancho de la viga:

— = - ^ -  =  0,00272

5y como b =  h, reemplazando se tiene:

de donde h =  y  0,00285 =  0,14 m.

l 5 5 X  0,14 nb =  —  h =    =  0,10 m.

Ahora se necesita verificar sí la resistencia de la sección 
es suficiente para el esfuerzo cortante.

Se tiene:
Cm =  — (300 +  130 +  150 +  220) =  — 800 kilos

en efecto en el diagrama del esfuerzo cortante da:
Cm =■= dh =  — 800 kilos.

Si se admite, aproximadamente, ,que este esfuerzo se re­
parte igualmente en la sección transversal, se encuentra

C 800
C “  A “  0 . 1 4 X 0 . 1 0  =  57 J42  k / m '
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o sea c =  5,7 k /cm 2.

Como este valor es muy pequeño, no hay necesidad de 
aplicar la fórmula exacta y se puede contentarse con esta 
aproximación, que la viga resiste con exceso.

7 2 .— Momentos de flexión y esfuerzos cortantes pava una 
viga con carga uniforme y concentrada a la vez.

En la mayor parte de los problemas que se presentan en 
la construcción, las cargas se componen de repartidas uni­
formemente y aisladas. Por lo cual analicemos el siguiente 
caso:

Sea una viga X Y  en la que reposan las dos cargas con­
centradas ah y  cd; además también actúa una carga unifor­
memente repartida sobre la región mo de la viga, de intensi­
dad p por metro lineal, fig. 67.

Como en la región que se aplica cd está también la car­
ga uniforme, no podremos reemplazar a ésta con una sola 
fuerza equivalente; sino dividir en zonas limitadas por cada 
fuerza concentrada, así: primero la zona mnt que no tiene 
ninguna otra fuerza, la reemplazamos por la be aplicada en 
la mitad y proporcional a esta longitud. Después viene la 
fuerza concentrada cd, y  de aquí consideramos la zona no, 
que no tiene ninguna otra fuerza, esta región no se reempla­
za por la fuerza de, que actúa asimismo en su mitad y pro­
porcional a la longitud no.

Con estas modificaciones hemos trazado el dinámico 
A BCD EFA  y el funicular correspondiente.

Ahora hagamos en el funicular los cambios correspon­
dientes a carga repartida: se proyecta los puntos m y  n sobre 
el funicular ya trazado y en este lugar se dibuja un arco de 
parábola, tangente en p y q.

Así mismo, se proyecta la región no y  tangente en q y r, 
se traza otro arco de parábola. Así queda terminado el dia­
grama de los momentos de flexión.

Con este dinámico, es fácil trazar el diagrama de los es­
fuerzos cortantes, siguiendo las reglas ya conocidas. Después 
se hacen las modificaciones para carga repartida. Esto es 
fácil darse cuenta con sólo la inspección de la figura.
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7 3 .— Aplicación, Determinar los momentos máximos de 
flexión y el esfuerzo cortante, para una viga de 8 m. de luz, 
con carga uniforme de 400 kilos por metro y una carga con­
centrada de 800 kilos, colocada a 3 m. del apoyo izquierdo. 
Luego calcular la sección transversal de la viga*

Primero se considera a las dos zonas de cargas uniforme, 
separadas por la carga concentrada, como que sí fueran con­
centradas en la mitad de estas regiones e igual al valor de la 
respectiva carga repartida. Así la fuerza ab vale Í.200 k;
la cd =  2.000 k. fíg. 67-a,

Con estas fuerzas se traza el dinámico y el funicular 
correspondiente (líneas de puntos). Hecho esto se hace las 
modificaciones en ambos diagramas para cada carga uniforme; 
de manera que para la primera región, del diagrama de mo­
mentos, que mide 3 m. se traza la parábola tangente a los 
dos lados del funicular. Lo mismo se hace para la otra re­
gión que mide 5 m.

El área comprendida entre los dos arcos de parábola y el 
lado de cierre es el diagrama de momentos.

El momento máximo ocurre bajo la carga concentrada; 
midiendo la ordenada en este punto, tiene por valor:

=  4.500 k. m.



tscolos 
L o n g .  lilOO 
Fuerz 1 cm 1 0 0 0

fig 6/-0

La escala de momentos es 1 cm. =  L500 k. m.
La escala de fuerzas es 1 cm. =  1.000 k. m.
La escala de longitudes es 1 : 100 m.
El diagrama de los esfuerzos cortantes no tiene ninguna 

dificultad para su trazado.
El valor del momento máximo, comprobemos con la 

fórmula, haciendo x = 3  m.

M =  X x  — =  2.100 X  3  400 X  3;_  _  4 SQQ km .

La reacción se calcula, por la fórmula ya conocida:
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X - - V +  f (, 7 ») , « ° X ' + » f c i )  =  M 0 ,
¿ L ¿ o

Nota.—Se puede también trazar los diagramas, dibujan­
do separadamente para cada una de las cargas.

Para la carga uniforme será la parábola (N°. 62) y pa­
ra la carga concentrada será un triángulo (N°. 63).

Se adicionan las ordenadas de los dos diagramas repre­
sentativos, determinándose así un cierto número de puntos que 
se los une por medio de una curva que representa la curva de 
los momentos de flexión totales.

Para los esfuerzos cortantes se hace la misma adición, de 
las ordenadas de los dos diagramas encontrados para las dos 
clases de cargas.

Ahora calculemos la sección transversal de la viga para 
este sistema de cargas. La viga es de madera y la resisten­
cia admisible es de 50 k /cn r .

La conocida fórmula de la flexión es:

Sustituyendo los valores encontrados se tiene:

1 4' 50°  - 0 . 0 0 9c 50 X  10*

que es el valor del módulo de resistencia de la viga.
Como la viga más resistente es la que el ancho y el al­

to de la sección transversal están en la proporción de 5:7, 
se tiene:

I  = J*L =  0.009

5y como b =  — h, se tiene reemplazando este valor:
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5h;l 
-r- =  0.009 42

de donde

h = y 4 2  X 5 ° - 0 0 9  = 0 , 4 2  m.
u _  5 , _ 5 X  0,42 A _  b — — h — ------   =  0,30 m.

Como estas dimensiones son un poco exageradas para 
conseguir una viga de tal magnitud, será mejor emplear una 
viga de hierro, para este caso. Las dimensiones es fácil en­
contrar en los manuales o en las tablas que publican los fa­
bricantes.

7 4 .— Carga indirecta sobre las vigas.
En los puentes sucede que las cargas no obran directa­

mente sobre las vigas, sino sobre vigas secundarías o lar­
gueros que descansan por sus puntos de apoyo en la viga 
principal; las reacciones de los apoyos no experimentan va­
riación alguna, pero en cambio los diagramas de momentos 
y esfuerzos cortantes sufren una pequeña variación.

Tracemos el dinámico y el funicular correspondiente a 
las cargas ab y be; se traza el lado de cierre d y el radío 
polar respectivo que determina las reacciones de los apoyos 
X  y Y. Entonces se proyectan los extremos de los largue­
ros m y n, en el que actúa la carga abf hasta que corte al 
funicular en m’ y nT; se une estos puntos y la paralela a esta 
línea trazada por el polo, divide a la fuerza ab en dos partes 
BB' y B'A: que son las presiones que trasmiten las vigas 
transversales a la viga principal por los puntos m y n. Aná­
logamente se hace con la carga bcy se obtiene el lado nfo , 
cuya paralela por P  descompone a la fuerza en dos, que son 
CC7 y C'B que obran directamente sobre la viga principal.

Así se obtiene el área de momentos, representada por la 
superficie rayada; cuyo máximo corresponde siempre a un apo­
yo de la viga transversal fíg. 68.
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C
V

Por lo visto, se puede trazar de un modo muy sencillo 
el diagrama de momentos correspondiente a cargas indirectas: 
Basta trazar el dinámico y el funicular correspondiente a las 
cargas mediatas y unir los puntos en que encuentran al funi­
cular, las verticales de los puntos de apoyo de los largueros; 
con lo cual se obtiene el funicular que limita el área de mo­
mentos.

Los esfuerzos cortantes quedan determinados por las car­
gas parciales que actúan en los apoyos de las vigas transver­
sales, que se determinan directamente con el dinámico, fíg. 68.

7 5 .— E l mismo caso anterior• pero con carga uniforme in­
directa.

Sí las cargas son uniformes sobre los largueros, basta de­
terminar las presiones en los apoyos de éstos y el problema 
queda reducido al anterior.



A N A LES  D E LA

Sí la carga es uniforme en toda la longitud / de la viga, 
las reacciones de los apoyos son iguales entre sí e igual a la 
mitad de la carga total.

Se encuentra el diagrama de momentos, determinando la 
carga parcial que actúa sobre cada viga transversal. Casi 
siempre estas vigas están a igual distancia y entonces las 
cargas de cada una son iguales entre sí e igual a p X  a/ si
p es la carga por unidad y a la distancia entre las vigas
transversales, fíg. 69.

Estas magnitudes p X  a actúan concentradas sobre la 
viga principal; entonces trazando el dinámico y el funicular 
de estas fuerzas, se obtiene el diagrama de momentos, tal 
como se ha hecho en la fíg. 68.

El diagrama de los esfuerzos cortantes se construye con 
estas mismas cargas parciales, como en la fíg. 69, observan­
do que el esfuerzo cortante es el mismo a lo largo de cada 
larguero.

También se puede construir el diagrama de los esfuer­
zos cortantes, deduciendo del que corresponde a carga unifor­
me directa, trazando simplemente horizontales en la intersec­
ción de las proyecciones de los puntos medios de los largue­
ros, con la línea inclinada que limita el área de los esfuerzos 
cortantes para carga uniforme. Véase la fíg. 69.

7 6 .— Influencia de la trasmisión de la carga por medio
de largueros. En la práctica las cargas se trasmiten a la viga 
principal por medio de largueros; sin embargo se admite fre­
cuentemente que las ruedas de los vehículos giran directamente

M 4J  ••

% 7?
I
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sobre la viga principal. Entonces vamos a ver cuál es el error 
que se comete al hacer esta variación, considerando cargas di­
rectamente aplicadas a la viga principal, haciendo caso omiso 
a los largueros.

Fijémonos en la fíg. 68, en la que hay dos cargas ab y be. 
Sí se supone que obran directamente sobre la viga principal, 
el diagrama representativo de los momentos de flexión será 
ir  sk i sus vértices están en las líneas de acción de las cargas.

Ahora sí suponemos que la carga ab, fíg. 70, se trasmite 
a la viga principal, por medio de los largueros m y n, se divide 
la fuerza en dos componentes, a'a y bb', cuyas líneas de ac­
ción pasan por m y n. De esta manera queda suprimida la 
fuerza ab y reemplazada por a'a y bb\ Entonces el polígono
funicular será la línea j t r í r í  teniendo sus vértices en las
nuevas líneas de acción de las fuerzas; los momentos de flexión 
en el intervalo entre m y ti estará representado por una línea 
recta.

Por otra parte, el equilibrio estático no se altera, por la 
descomposición de una fuerza en dos otras, pues las reaccio­
nes de los apoyos quedan las mismas en los dos sistemas; 
también los momentos de flexión no han cambiado en los 
puntos m y ti, como índica claramente el gráfico. Si este ra­
zonamiento hacemos extensivo a todas las cargas, resulta que
los momentos de flexión en los puntos til, ti , de apoyo de
los largueros, están representados por las ordenadas m* m”  y 
nf ti” . Este funicular está simplemente inscrito en el que ha ­
bíamos obtenido al trazar con las cargas originales.

En resumen, el momento de flexión en una sección cual­
quiera, por ejemplo, bajo la fuerza ab, está dado por la orde­
nada ur en el caso primitivo, y por ur* en el caso segundo. 
Este último valor es el exacto, y en el primer caso se peca por 
exceso.

El error cometido es tanto menor, cuanto los largueros 
están más próximos entre sí.

En la práctica, este error es despreciable y por esto se 
justifica la suposición de considerar a las cargas directamente 
aplicadas a la viga.

Veamos en un ejemplo numérico la magnitud del error 
cometido.



42 S A N A LES  DE LA

7 7 .— Aplicación. Dos •L'ígas ae (5 m, efe fe.z, distantes en­
tre si de 3 m., medidos de eje o eje, soportan el paso de un ca­
mión de JO toneladas, cuya distancia entre ejes es de 4 tn. Se 
supone que el eje delantero lleoa el 25 °/o y el trasero el 75 °/o 
de la carga total. E l  eje delantero está a 1 m. del apoyo iz­
quierdo, fig. 7J.

Consideraremos primero que la carga se trasmite por me­
dio de los largueros, que distan 2 m. entre sí; luego haremos 
los cálculos como que si la carga se trasmitiera directamente 
a la viga principal.

Vamos a determinar los momentos de flexión y los es­
fuerzos cortantes.

Si suponemos que el camión está a igual distancia de las 
dos vigas, cada una de éstas soporta la mitad de la carga 
total, o sea 5 toneladas.

El eje delantero lleva una carga de 0,25 X  5 =  1,25 
toneladas.

El eje trasero, lleva una carga de 0,75 X  5 =  3,75 to­
neladas.

Primero encontremos las magnitudes de las reacciones 
de los apoyos, trazando el dinámico ABC, luego el funi­
cular correspondiente para cargas directas y se dibuja el la­
do de cierre jk ; por el polo P  se traza una paralela a esta 
línea y se determina el punto D, el que nos dá las magnitudes 
de las reacciones. En este caso particular, por casualidad 
son iguales las reacciones entre sí.

5TX =  Y =  =  2 ,5t

Después se hace la modificación del funicular para car
gas mediatas y éste es jm gi^oji.

Para  conocer los momentos de flexión, se mide las or­
denadas del funicular bajo el punto dado, a la escala de mo 
mentos. La escala es: (v. pág. 43).

a =  JO"*; p =  5 X  ICT3
«p i c r 2 x $ X  JO- "

r  ~  A -  0,01 0,005



UN IVERS ID A D  C EN TRA L 429

Y
1

0,005 200

Sí queremos conocer el momento bajo el larguero m, la 
ordenada m,m., se mide en su verdadera magnitud y el mo­
mento es:

m —  m ,m , . —f =  0,0187 X  200 =  3,74 T .  M.

En el larguero n el momento es:

m =  n,n., .2 -  =  0,0312 X  200 =  6,24 T .  M.

<\tpII
W5 J EscolôI

Lüngilud  < lOOFuorzoó Icmx 2 T
MomOnfos Icm - 2
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En el larguero o el momento es:

m  =  0 , 0 , .  4  =  0,025 X  200 =  5,00 T .  M.I
Ahora vamos a considerar a las cargas como directamen­

te aplicadas a la viga principal; el diagrama de momentos es 
jf\Q\ k (líneas llenas). Se observa, que las ordenadas bajo los 
largueros son exactamente iguales al del caso anterior; sólo se 
nota una pequeña diferencia en los espacios en que actúan 
las cargas. La mayor diferencia se anota bajo la carga de 
3,75 toneladas, en que el momento para cargas aplicadas di­
rectamente a la viga es:

m  =  q, q , . y  =  0,036 X  200 =  7,2 T .  M.

Mientras que para cargas mediatas, en este mismo punto 
q, el momento es:

m  =  q, q.. y  =  0,028 X  200 =  5,6 T .  M.

Como se ve la diferencia es de 1,6 T .  M., pero sólo pa­
ra este punto y debido a la magnitud de la carga; de aquí 
rápidamente el momento va disminuyendo a un lado y otro, 
hasta que llega a ser igual en ambos casos. Para carga uni­
formemente repartida, el error es más insignificante.

En los espacios comprendidos entre dos largueros con­
secutivos y que no llevan carga, se observa en el diagrama 
que los momentos no sufren variación alguna.

En resumen, considerando cargas directas, se peca por 
exceso en los lugares en que ellas actúan; pero el error es 
prácticamente despreciable. Y en donde no hay cargas, los 
valores de los momentos son iguales en los dos casos.

Para  los esfuerzos cortantes también sufre el diagrama
una pequeña variación:

Para  cargas directas, el diagrama de los esfuerzos cor­
tantes está representado, en la fíg. 71, por líneas llenas.
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Para cargas mediatas eí diagrama está dibujado en linea 
de puntos, en los espacios que hay modificación.

Los valores son:
En el punto m el esfuerzo cortante es: 

para cargas directas C =  1,25 T .
» » mediatas C =  1,875 T .

Para el punto n:
para cargas directas C =  1,25 T .

» » mediatas C =  1,875 T .
Para el punto o:

para cargas directas C =  2,50 T .
» » mediatas C =  1,875 T .

*

Como se ve, unas veces es mayor en el un caso y otras 
en el otro; pero los valores máximos se encuentra en el caso 
de cargas directas, y el error es por exceso.
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C A P IT U L O  VIII

Vigas empotradas en sus dos apogos o hiperestáticas

7 8 .— 'Definiciones. Se denomina apoyo empotrado, cuan­
do estos apoyos aseguran a la viga tan fuertemente, que 
cuando actúan las cargas las secciones transversales de la 
viga, en la porción empotrada, no sufren ni desplazamiento 
transversal ni desviación angular.

Para fijar ideas, pongamos un ejemplo: el de la fig. 72. 
Imaginémonos una viga apoyada sobre dos cuchillos invaria­
bles en posición y situados a una distancia conveniente, como 
índica la figura; sobre el lado derecho actúan cargas de cual­
quier naturaleza, cuya resultante es R.

R
>

1

X

Se ve pues que la porción de viga X X , es lo que cons­
tituye el empotramiento y como en el punto X  se desarrolla 
la reacción del apoyo, normal a la fibra medía de la viga, 
y un momento de empotramiento; habrá que determinar am­
bas magnitudes.

De este momento de empotramiento ya habíamos habla­
do al tratar de vigas empotradas en un apoyo, págs. 64 y 65.

El estudio de estas vigas, facilita la resolución de los 
problemas en las vigas continuas y sus conocimientos son 
indispensables para la comprensión del arco empotrado; ade­
más de que ellas mismas se usan mucho en las construc­
ciones.Ahora como la viga que tratamos de estudiar tiene em­
potramiento en sus dos extremidades, resulta que tenemos,



como incógnitas dos reacciones y dos momentos de empotra­
miento; en total 6 magnitudes desconocidas, que se reducen 
a 5 cuando las fuerzas son verticales.

Para calcularlas, no disponemos sino de las ecuaciones
generales de equilibrio de la Estática, que en este caso se re­
ducen a dos:

Io. Suma de las proyecciones verticales, de un sistema 
en equilibrio, es igual a cero.

2o. Suma de los momentos con relación a un mismo 
punto, es igual a cero.

La tercera condición, la de las proyecciones sobre una 
horizontal, se reducen a identidad, 0 =  0.

De donde vemos que sólo con las dos ecuaciones no
podemos llegar a conocer 5 incógnitas. Por esto se conclu­
ye diciendo que: sólo las ecuaciones de equilibrio estático no 
nos permiten determinar las reacciones de los apoyos en una 
viga empotrada en ambas extremidades.

Para obviar esta dificultad, tenemos que buscar otras 
ecuaciones; es la resistencia de materiales que nos puede fa­
cilitar.

UN IVERS ID A D  CEN TRAL

V i g a  e m p o t r a d a  c o n  c a r g a  u n i f o r m e

7 9 .—Las ecuaciones suplementarias para conocer todas 
las incógnitas, las podemos encontrar en las deformaciones 
elásticas que sufre la viga cuando se aplican las cargas. P a ­
ra esto se parte de la ecuación diferencial de la deformación 
de la fibra media o linea elástica; esta es:

d-y M 
dx* ~  El

en la cual M es el momento de flexión en un punto cual­
quiera de la viga empotrada; E es el coeficiente de la elasti­
cidad del material. Y I es el momento de inercia de la sec­
ción transversal de la viga.

La ecuación (I) se puede poner bajo la forma:

A •>»»T*) *)
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M =  EI - &  (2)

Ecuación que nos hace conocer la curvatura de la fibra 
deformada en función del momento de flexión.

El valor de M podemos conocerlo fácilmente:
8 0 .— Sea una viga con carga uniforme de intensidad p, 

fíg. 73, de luz l v de apoyos empotrados.

Por la simetría de la carga, las reacciones son evidente­
mente iguales y tienen como valor común:

X  =  Y  =  y  (3)

Si designamos por k y kf el valor del momento de em­
potramiento en el apoyo izquierdo y derecho, respectivamen­
te. El momento de flexión en una sección cualquiera de 
abcísa x es:

M, =  k  +  X. X —

sí  en esta ecuación reemplazamos el valor de X  encontrado 
en la ecuación (3) tenemos:

M, = k  +  j | L - J « l  (4)

(v. N°. 62) y teniendo en cuenta la ecuación (2), resulta:



UN IVERS ID A D  CEN TRAL 435

E , (5)

Integrando esta ecuación, se tiene:

El ^  =  k . x  -\-  ^ -----1- constante (6)d x  4 6

En la zona de empotramiento actúan dos clases de fuer­
zas, que producen deformaciones diferentes: en efecto, consi­
deremos a la viga de la fíg. 73, como que tiene apoyos libres, 
pero de la misma luz y sometida a las mismas cargas; lo 
que daría una fibra deformada, cuya convexidad sería idénti­
ca al de los casos ya estudiados, de vigas de apoyos libres.

Y en una segunda consideración, aplíquémosla a la viga, 
de la fíg. 73, después de haberla suprimido las cargas, los 
dos momentos de empotramiento k y k\ Estos momentos 
tienen capacidad de deformar a la viga en sentido inverso del 
primer considerando; teniendo la fibra deformada su convexi­
dad en la superficie superior de la viga.

En virtud de la ley de Hooke, la deformación resultante 
será la suma de las dos deformaciones. Como tiene sentidos 
contrarios la fibra deformada sobre cada apoyo será horizontal.

También la ecuación (5) nos índica que el momento total, 
es la suma de los momentos en la misma sección de la viga 
considerando libremente apoyada y de un momento negativo, 
debido a las acciones de los momentos de empotramientos que 
son negativos.

Por esta razón la ecuación (5) se puede escribir:
M, =  M — M, (50

Llamando M, al momento total en la viga empotrada; 
M al momento en la viga líbre, y M., al momento debido a 
las acciones de los momentos de empotramiento.

Con estos conocimientos, tratemos de conocer a la cons­
tante de integración de la ecuación (6):

En los apoyos, sabemos que la fibra medía, conserva en 
estos puntos su dirección horizontal inicial.
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Entonces, para el punto X, se tiene,

x =  o v —r— =  o,dy
dx

sustituyendo estos valores en la ecuación (6) se obtiene que 
la constante =  O.

La ecuación (6) se reduce a:

E ,  £  _  t +  ü É l - e L  < 7 )

De la misma manera para el punto Y se tiene:

x —  l y - j -  =  odx

sustituyendo en la misma ecuación (7) dá:

0 ^ k . / + Ç - ^  =  k . /  +  g  (8)

de donde se deduce inmediatamente:

k =  -  ? -  (9)12
I

Reemplazando este valor en la (4), expresión general 
del momento de flexión en un punto cualquiera, se tiene:

M, = yp  l(x  ¿O — (J°)

Para encontrar el momento, en la mitad de la viga
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reemplacemos en la (10) x por -y /:

Mm =  ¿ pF  ~ \ pV' = u  (11>

El momento máximo de flexión en la mitad de una vi­
ga empotrada en sus extremos, es la tercera parte del valor 
del momento para una viga sobre apoyos libres, de la misma 
luz y con las mismas cargas.

El momento en los apoyos empotrados, tiene el doble de 
valor del momento en la mitad de la viga y es de signo con­
trarío.

Con los valores de k y de Mm ya se puede trazar el 
diagrama representativo de los momentos de flexión, para 
una viga empotrada en sus extremos; advírtíendo, que en es­
te caso, la carga es simétrica y que por lo tanto los momentos 
de empotramiento son iguales:
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k =  k ' =  — (9’)

El diagrama está limitado por una parábola, su vértice 
se encuentra en la vertical trazada por la mitad de la viga. 
Además la ecuación (5) la habíamos escrito bajo la forma (5');
v. fíg. 74:

M, =  M — M 2 (50
lo que quiere decir que al diagrama de momentos de una viga 
con apoyos libres y carga uniforme y de la misma luz, hay 
que restarle los momentos producidos por el empotramiento. 

Entonces a partir de una línea cualquiera ab, pero para-
lela a la viga, y en su mitad, llevamos una magnitud ef =  y —

J L * I
positivamente. P e r  los extremos de abt es decir, bajo los apo­
yos, y en sentido negativo ponemos las magnitudes.

b h =  a g =  — y 2 pl-

Por los puntos g, f, h, se hace pasar una parábola, tra­
zada por medio del método indicado en el N° 62.

Las ordenadas comprendidas entre la parábola y la línea 
de cierre ab, son los valores de los momentos de flexión para 
cada punto de la viga; ésta área está sombreada.

El diagrama índica que el área superior a ab es positiva 
y las dos áreas inferiores, negativas.

O más simplemente: primero se dibuja el diagrama de 
momentos para la misma viga, pero con apoyos libres; ese 
es la parábola g fh  tomada como base la línea horizontal gh; 
luego, la ordenada trazada por la mitad de la viga, que es 
también la máxima, y comprendida dentro de la parábola, se 
divide en tres partes iguales; por el extremo del tercio supe­
rior se traza el lado de cierre, que en este caso particular es 
horizontal. Se tiene así, lo que hemos dicho antes:

ga =  2 fe
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De esta manera nos evitamos los cálculos de los mo­
mentos de empotramiento; que se encuentran midiendo las 
ordenadas en las verticales de los apoyos a la escala de 
de momentos. Lo mismo para el momento máximo positivo.

La línea que limita los diagramas de los esfuerzos cor­
tantes es una línea recta. Se traza la horizontal í j;  por los 
puntos i y j  se lleva positivamente y negativamente los va­
lores de las reacciones:

X =  Y =  + 4

se obtiene los puntos k y m que se une por una línea. El 
área superior es positiva y la inferior negativa.

8 1 .— Aplicación. Una viga de 3 metros de luz lleva una 
carga uniformemente repartida, de intensidad p = 1000 k. Fíg. 75.

Tracemos los diagramas tal como hemos indicado en el 
número anterior, adoptando una escala conveniente, y verifi­
quemos los resultados por medio de las fórmulas. Calculemos 
las reacciones de los apoyos, fórmula (3):

X  =  Y =  4  p/ =  4 .  1.000 x 8 =  4.000 k.

Los momentos de empotramiento, según la fórmula (9)
son:

f f , 1 r, 1.000 X  8‘Jk =  k =  — J 2 ---------- 12------- =  — 5*333 k.m.

El momento máximo ocurre en la mitad y su valor es:
1 ,, 1.000 X  8 ' •} / / 7 iM = — pl 1 =  ------------ —  =  2.667 k.m.24 24

Como se ve concuerdan exactamente los resultados grá­
ficos con los numéricos. Los primeros se indican en la mis­
ma figura.
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En los puntos c y  d, fíg. 74 los momentos de flexión son 
nulos. Las distancias a los apoyos está dado por:

ac =  db =  - j ( l  — | / y )  =  0,21 1 / (12)

=  0,211 X  8 =  1,688 m.
Para  trazar el diagrama de los esfuerzos cortantes, nos 

referimos a la expresión (1) del N°. 62, que dá el esfuerzo
cortante para un punto cualquiera:
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Para el apoyo izquierdo, el esfuerzo cortante es igual a 
la magnitud de esta reacción:

C =  X  =  y  p l =4.000 k. (13)

Por la misma razón, para el apoyo derecho:

C =  Y = ----- y p /  =  — 4.000k. (14)

Entonces el diagrama de los esfuerzos cortantes se forma, 
trasladando sobre las verticales de los apoyos segmentos
iguales a —- p/, en sentido inverso a partir de una horizon­
tal; después se une con una línea. El área superior es positiva 
y la inferior, negativa.

Sí se quiere encontrar el momento de flexión para un 
punto cualquiera de la viga, sea por ejemplo a 3 m. del apo­
yo izquierdo; se mide la ordenada bajo este punto, que es 
la ab, a la escala de momentos:

ab =  2.160 k. m.
Se puede comprobar aplicando la fórmula general (4):

M =  y  px ( /  — x) +  k =  y  1 .0 0 0 X 3 (8  — 3) — 5.333 =

=  2.167 k. m.
El esfuerzo cortante para este mismo punto es:

cd =  1.000 k.
que comprobando por medio de la fórmula general dá: (N°. 62 
fórm. 1).
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c  =  p ( y  —  X ) =  1.000 ( - |  —  3) =  1.000 k.

V i g a  e m p o t r a d a  c o n  c a r g a s  c o n c e n t r a d a s

8 2 .— Caso Io.— Actúa una sola carga F , situada en un 
punto cualquiera de la viga.

Llamemos l la luz de la viga y F  la carga que dista del 
apoyo izquierdo de la distancia a♦

Calculemos las reacciones de los apoyos y los momen­
tos de empotramiento:

Por las ecuaciones generales de equilibrio (N°. 78) se 
puede escribir:

X  +  Y — F  =  0 (1)
X . /  +  k — k ' — F ( / — a) =  0 (2)

de donde se deduce:
Y  =  F  — X  (3)

y
k ' =  k — F  ( / — a) +  X . /  (4)

Para  determinar las incógnitas Y y k', es necesario ocu-
1 r -'  ̂2y Mrrír a la ecuación diferencial de deformación =  gjf“ *

Pero como se tiene dos valores para x, según que sea menor 
o mayor que a; habrá que integrar entre los intervalos o a.
y a  — 1.

Io. Cuando x <  a se tiene:
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le ÍX kv%

 :  1------------------
f ¡9.76

I

Una primera integración de la ecuación (5) dá:

El =  k . xdx
X . x'2 +  C (6)

Sabemos que estando la viga empotrada en el apoyo X, 
la fibra medía conserva en este punto su dirección horizon­
tal inicial (N°. 79) y además, ^  expresa la tangente trigono­
métrica del ángulo que forma la horizontal con la tangente 
de la fibra medía deformada.

Se ve claramente que estos ángulos son muy pequeños, 
puesto que las deformaciones también son pequeñas, y  por 
consiguiente se puede reemplazar los ángufos por sus tangen­
tes: entonces se puede decir que la ecuación (6) nos dá la 
inclinación, respecto de la horizontal, de la fibra medía de­
formada.

Sí conserva su dirección horizontal inicial la viga en el
d yapoyo: para x =  o se debe tener =  0; sustituyendo estos 

valores en la ecuación (ó) se encuentra que:
C

entonces la ecuación (6) queda:
0

El dy
dx k .

X . x
X (7)

Sí esta ecuación la integramos una segunda vez, se tiene:



El  y  =  k ^ - X ^ + C ’
¿  6 (8) 4

Esta ecuación nos dá la ordenada de la fibra medía defor­
mada o sea la flecha; o también la deformación lineal vertical 
de la viga. Luego esta segunda constante C ,  representa la 
deformación vertical de la fibra medía en el origen de las inte­
graciones.

Como en este punto, la fibra medía no sufre ningún des­
plazamiento, se ve que, x =  o, y y =  o. Sustituyendo es­
tos valores en la (8) se encuentra que:

C  =  0
la ecuación (8) se reduce a:

o qX" XE I . y = k ^ - X |  (9)

2°. Cuando x a, la ecuación de deformación se es­
cribe:

*
El 4 ^  =  M ' =  k — X . x  +  F  ( x — a) (9')

como antes, hagamos dos integraciones sucesivas de esta 
ecuación diferencial, se obtiene:

El =  k.x  — X  ^  +  F  ( — a.x ) +  C, (JO)dx 2

EL y =  k ^ 1 — X - ^ +  a 4 - )  + c .x + c 2 0 0

Las dos porciones de línea elástica, dadas por las ecua­
ciones ( 9 ) y ( í l ) ,  que corresponden a las porciones, fíg» 76, 
de abscisas a y ( l  —  a) de la viga, deben unirse bajo la fuer­
za F, de abscisa x =  a; puesto que la deformación debe ne-
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cesaríamente ser una línea continua y no angulosa; es decir, 
que en la dirección de F  las dos partes de curvas, dadas por 
las dos ecuaciones, tienen la misma tangente y por consiguien­
te la misma ordenada; de donde se deducen las igualdades 
entre las ecuaciones (7) y (10) y entre (9) y (11):

a M + C ,  (7 )+ (10)

de donde simplificando se encuentra:

k. a — X ka — X 4 r +  F

C, = F 4 :

k T _ x T = k y — x T _ F y + c ‘ a + C 2  (9)+ (U )

sustituyendo el valor encontrado de C, y simplificando; fá 
cílmente se encuentra:

a 3C., =  — F %■

Las ecuaciones (10) y (11) pueden escribirse:

E I É = k x - X T + F ( T - a ^  +  F a

E I y  =  f c y — X j + f Í — £ X _ ^ _ |_ F a-x Fa

Así mismo, la viga estando empotrada en el apoyo Y, 
la fibra media no sufre, en este punto, ni desviación angular 
y desplazamiento vertical:
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Luego para x —  l, la deformación angular ~  y la de-dx
formación vertical y  son nulas. 

Se tiene pues:

k x - X ^ + F [ ^ . - a x  ) + F ^  =  0 ( 12) '
y

k £ _ x £ + F  U - j f  )  +  i  (13)

Despejando en la ( 12) el valor de k, se tiene:

X  / F
k = J ¥ ~ r / « - a >  ( I 4 )

—

Despejando en la (13) el valor de X  dá: f

X  =  - ^ - . +  - £ - ( / - a)» (15)

De las ecuaciones (14) y (15) resultan por fin:

( 1 6 )

/- r

x  =  F  (/.  _  3av  +  2a3) =  F  (3a +  ^  (17)

Estos dos valores, reemplazando en las ecuaciones (3) 
y (4) y despejando las incógnitas del otro apoyo, se tiene
por fin:

Fa~ ( /  a ) _ _ F a ^ b  (J8)—  12 —  /

I
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Y  =  (31 -  2a) =  F(a + , 3b)a'' (19)

Los momentos k y k' son siempre negativos.
8 3 .— Momentos de flexión. Por las fórmulas (16) y (17) 

se conoce X  y k, entonces podemos fácilmente calcular los 
momentos de flexión para un punto cualquiera de la viga, 
distante x del apoyo izquierdo.

Como hemos dicho antes hay dos valores:
Cuando x <  a, se tiene:

M =  k — X x  (5)
Para  x >  a, dá:

M =  k — X x  - f  F  (x — a) (9')
Como hemos visto ya (N°. 75, ec. 50* estas ecuaciones se 

puede poner bajo la forma general:
M, =  M — M,

ô que se interpreta diciendo: que el diagrama de momentos, 
es el mismo que para una viga con apoyos libres, de la mis­
ma luz y con las mismas cargas; pero relacionado a una lí­
nea de cierre del funicular que corta las verticales de los apo­
yos a una distancia igual a la magnitud de los momentos de 
empotramiento; medido a la escala de momentos.

El momento máximo tiene lugar al recto de la carga y 
tiene por valor:

IWm =  2 F V  a )~ (20)

Sí la carga se encuentra en la mitad de la viga;
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y la ecuación (20) se simplifica:

Mm F / 
8 (200

este momento es siempre positivo.
El diagrama de los momentos de flexión se dibuja así

fíg. 77:
Sobre las verticales de los apoyos y en sentido negativo 

se pone los momentos de los apoyos k y 1i .
Se une estos puntos y resulta la línea AB.

i  
&

i voCVv

JD _

le

>.

<‘9)77

Sobre la vertical del punto donde actúa la carga y a 
partir del lado de cierre AB se lleva positivamente

CD =  Mm 2F a 2( l— a) •>

/

Se une este punto D con A *  y B *  por medio de r e c t a s

♦ 
♦
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La línea A 'DB' relacionada al lado de cierre AB, es el dia­
grama de los momentos de flexión para una viga empotrada 
en ambos extremos (áiea sombreada); mientras que el área 
A'DB', tomando como base A'B', representa el diagrama de 
flexión para la misma viga con apoyos libres.

Las áreas que están sobre el lado de cierre son positi­
vas y las que están bajo, negativas. Además los puntos de 
transición, E y F, son de momentos nulos.

Estos puntos, tienen por abscisas:

a l (2 l >
X — Z + 2a

Esfuerzos cortantes. Sabemos que los esfuerzos cortan­
tes a la derecha o a la izquierda de la carga son constantes; 
entonces:

En la zona a, son positivos e iguales a:
C =  X

y en la región ( l  — a) son negativos e iguales a:
C =  — Y

luego para trazar el diagrama de los esfuerzos cortantes, nece­
sitamos previamente conocer las reacciones de los apoyos; 
cálculos que podemos evitarnos trazando gráficamente; así se 
obtiene el valor de las reacciones y el diagrama de los esfuer­
zos cortantes.

En efecto el lado de cierre AB del funicular, debe co­
rresponder a un radío polar que será paralelo; por el polo P 
tracemos una paralela al lado de cierre, la que determina en el 
dinámico el punto L, que divide a la fuerza en magnitudes co­
rrespondientes a cada una de las reacciones de los apoyos.

Por L se traza una horizontal GH; que es la línea que 
nos servirá de base para el diagrama, que se completa proyec-
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tando los extremos del dinámico. Así se ha construido el área sombreada.
Para  la viga con apoyos libres, la línea base habría sido 

la de puntos, que es la proyección L\  del radío polar paralelo 
a A 'Bk La distancia entre esta línea y la GH es:

k '  — k —  (23)

En efecto, consideremos los dos triángulos semejantes 
A B H  y PLL' y se tiene:

LL' _  A 
A H  — /

por la inspección de la figura vemos que A H  =  k' — k, y 
haciendo A igual a la distancia polar, se tiene:

LL’ =  [k’ ~  k] A

pero si de antemano trazamos el funicular con la distancia po 
lar igual a la unidad, se tiene:

  k -

L L ' i r r í - y - É

Se puede, también para el caso de aplicación de una so­
la fuerza, dar una interpretación gráfica para el trazado del 
lado del cierre en el diagrama de momentos:

Tracem os el diagrama de momentos para la misma viga, 
fíg. 77 , pero con apoyos libres y cuyo dinámico de polo P, tie­
ne una distancia polar igual a la unidad de longitud; se obtiene 
así el triángulo A'DB*. Por el vértice D se traza una paralela 
a A 'B ',  que corta la vertical del apoyo en el punto G; se 
une G con A \  Esta línea GA', corta a la ordenada bajo la 
fuerza, en C, en dos partes que son las dos magnitudes de 
los momentos de los apoyos: CD —  k y CJ =  k '. Luego
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por C se traza una paralela a A 'B ' y se tiene el punto B; 
para la otra magnitud se traslada con un compás.

Las ordenadas del diagrama de momentos se mide a la 
escala de fuerzas que es también la de momentos; pues he­
mos hecho para facilitar el trazado, la distancia polar igual 
a la unidad.

Esta interpretación gráfica se puede demostrar, pero omi­
timos en gracia de la brevedad.

8 4 .— Aplicación.— Sea una viga empotrada en sus dos 
extremidades; lleva una carga de 2.000 kdos, situada a 2 m. 
del apoyo izquierdo. Trazar los diagramas de los momentos de 
flexión y esfuerzos cortantes.

Se tiene:
/ =  5 m.; a =  2 m.; F  =  2.000 k.

Ambos diagramas vamos a trazar gráficamente.
Sea el dinámico AB y el polo P, de distancia polar igual

a 1 m.t fíg. 78.
El funicular para la misma viga de apoyos libres, es afb.
Por f, se traza, una paralela a ab y se determina el punto h. 

Luego la línea ah que corta a f í  en e; por este punto trazamos 
una paralela a ab y  encontramos el punto d; ei == db es la mag­
nitud del momento del apoyo derecho, medido a la escala de 
momentos, que es la misma de la de las fuerzas, dá:

k ' =  960 k. m.
Para el otro momento se puede también unir j  con b y por 

el punto de corte con la ordenada íf, se traza una paralela a ab y  
se obtiene el punto c, que determina el segmento ca— 1.450 k.m. 
que es la magnitud del momento del apoyo izquierdo.

Se une c y d; esta línea es el lado de cierre del diagrama 
de momentos.

El momento máximo positivo vale, medido a escala:
Mm =  1.Í50 k. m.

Para el diagrama de los esfuerzos cortantes, tracemos por 
el polo P  una paralela a cd, que determina el punto C y
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L o n g  1 :10 0  
F u e r .  I c m . l O O O  K 
Mom. l o n - I O O O  KM

f.g 76

por consiguiente las magnitudes de las reacciones de los 
apoyos. Por C se traza la línea horizontal que es la que 
sirve como base. Luego se proyectan los puntos A y B y 
se forman las áreas del esfuerzo cortante de la manera usual. 
Los valores están indicados en la figura.

Verifiquemos los resultados con las fórmulas:
Las reacciones de los apoyos valen:

X  = ~  ( Ia —  3a- l +  2a'1) =

=  2000 ^ _ 3 ^ 2 > X 5  +  2 X  2 “) =  >.296 k.5
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k

k'

2 . 0 0 0  X  2 - / o x / c  o  x /  ^  f gF (3 X  3 — 2 X  2) =  704 k.

Se debe tener sí ios cálculos están bien hechos:
X  +  Y  =  1.295 +  705 =  2.000 k.

Los momentos de empotramiento tienen por valor:

Fa ( / — a)J 2.000 X 2  (5 — 2)
Ï :¡ 1.450 k.m

Fa- (/ — a) 2.000 X  2 ‘ (5 — 2)
l2 5- 960 k.m.

El momento máximo positivo es:

M m  = - 2 Z i '  V  a) '
/

*•

2 X  2.000 X  2" (5 — 2)’“ f l c 1 f—— LL 1 — =  1.152 k. m.5

Los esfuerzos cortantes máximos son:
C =  X  =  1.296 k. 

y C =  — Y =  — 704 k.
Como se ve concuerdan los resultados con los obtenidos 

gráfícamcte.
La distancia entre la línea base del diagrama de los esfuer­

zos cortantes para la viga empotrada y la línea base para la 
viga de apoyos libres es (líneas de puntos):
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Se puede encontrar los momentos o los esfuerzos cortan­
tes para cualquier punto de la viga, midiendo la ordenada

 ~  t _  t _  _ j _ . _ i . - _ i -bajo este punto a la escala adoptada.

V i g a  e m p o t r a d a  c o n  c a r g a s  c o n c e n t r a d a s

8 5 .— Caso 2o. Actúan un número cualquiera de fuerzas 
concentradas sobre la viga.

Este caso vamos a desarrollar conjuntamente con un caso 
numérico.

En una viga de 7 m. de luz, actúan tres fuerzas, cuyas 
intensidades son de 1.300, 1.500 y 1.200 kilos, distantes del 
apoyo izquierdo de 2, 3, y 5 m., respectivamente. Se quiere 
construir los diagramas de momentos y de los esfuerzos cor­
tantes.

En este caso, de varías fuerzas, se necesita determinar las 
reacciones y los momentos de empotramiento para cada una 
de ellas, consideradas aisladamente como que si fuera la única 
que gravita sobre la viga, y después se hace la suma de las 
reacciones parciales y de los momentos de empotramiento de to­
das las cargas; es decir:

v F a  b '
--  ^ P (24)

V  Fa 2b (25)

„  v F  (3a +  b) b 2A. — ¿j (26)

„  VF  (a +  3b) a2
1 P

(27)
Los símbolos tienen aquí significación general, y b / a» 
En seguida se traza el funicular de las fuerzas exteiíoies 

que representa el diagrama de momentos, luego se traslada a 
escala los valores de las ecuaciones (24) y (25) y unten o 
estos puntos dá la línea de cierre.
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El momento máximo positivo tiene por valor:
¿¥m =  X x-f-k — Fj (x— a , ) = 2 .1 9 0 X  3 — 3.286— 1.300(3—2)

=  1.984 k. m.
Pero será mucho más simple valiéndose del procedimien­

to gráfico:
Se traza el funicular correspondiente a las cargas dadas 

y a la misma viga, pero con apoyos libres, véase la fíg. 7Q. 
Entonces se calcula las fórmulas (24) y (25), valiéndonos de
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la tabla adjunta a la figura. La suma de las dos últimas co­
lumnas nos dá el valor de k y k \

k =  — 3.286; k ' =  — 2.854
Estos dos valores son los únicos que es necesario cal­

cularlos numéricamente; los demás podemos determinar grá­
ficamente; en efecto:

Ponemos respectivamente en la vertical del apoyo izquier­
do y derecho y a partir de la línea de cierre obtenida, los 
valores de k y k\ Se une los extremos y éste es el verda­
dero lado cierre para la viga empotrada. El perímetro del fu­
nicular relacionado a este lado de cierre, comprenden las áreas 
de los momentos.

Las superiores positivas y las inferiores negativas.
El momento máximo positivo se vé que se encuentra ba­

jo la fuerza 1.500 y vale 2.000 k. m.
Para  el diagrama de los esfuerzos cortantes, se traza por 

el polo P  una paralela al lado de cierre; así determinamos las 
magnitudes de las dos reacciones:

X  =  2.200 ; Y  =  1.800 k.
Mientras que el cálculo analítico dá; fórmula (26) y (27):

X F, (3a, -\ b,) b? +  F .2 (3a.. +  b.,) b\ +  F ;, (3a:, - f  b.,) b2
3

/a

1.300(3X2 +  5)5-1 1.500(3X3 +  4)4i + 1.200(3X5 +  2)2-7¡
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Conocidas las magnitudes de las reacciones de los apoyos, 
es muy simple el trazado del diagrama de los esfuerzos cortan­
tes, la figura explica por sí misma.

Los esfuerzos cortantes máximos positivos ocurre en los 
apoyos e igual a la respectiva reacción.

86 .— Caso 3°,— V iga empotrada y sometida a la acción de 
una carga uniformemente repartida en toda la longitud y tam­
bién a una carga concentrada en un punto cualquiera.

Los momentos de empotramiento y las reacciones de los 
apoyos se determinan, para cada carga separadamente y se 
hace después su suma.

Así:
Para carga uniforme las reacciones de los apoyos son

(75, ec. 3):
X  =  Y  =  Pd

para cargas concentradas, ec. (17) y (19)

v  _  F (3 a  +  b ) b 2. F ( a  +  3b)a-
' Éff) f  X #•;V r LA

las reacciones de los apoyos para las dos cargas reunidas serán:

x , =  ¿  +  F  (3 ,  +  b> b- (2Í)

Y, =  f  +  E ü  +  M i  <2„

Los momentos de empotramiento para carga uniforme
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y para carga concentrada, ec. (f4) y [18]:

t F a b 2 19 F a 2bk  = ----- jó- ;  k  =  p -

el momento de empotramiento para las dos cargas es:

r  _  P * 3  2i t ? /-
y

12 i-

p r- Fa3bk2 2̂ p (31)

El momento de flexión para un punto cualquiera, peí o a 
la izquierda de la fuerza F  es:
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f f l =  X x  +  k — (32)

y a la derecha de la fuerza es:
o

=  X x  +  k — — F(x — a) (33)

y el máximo positivo se producirá bajo la carga y tiene por 
valor:

cMm —  X a T  k  (34)

8 7 .— Aplicación— Consideremos una viga de 7 m. de luzf 
que soporta una cargel uniformemente repartida de 400 k/m. y 
una carga concentrada en su mitad de U000 k. Fíg. 80.

Primero consideremos a la viga de apoyos libres y tra­
cemos para ésta los diagramas de momentos y de los esfuerzos 
cortantes (71), para carga uniforme y concentrada a la vez. 
[Fíg. 80]. Para lo cual, la porción de carga uniforme a la 
izquierda de la fuerza F  se la reemplaza, con una fuerza 
concentrada en la mitad y equivalente a su longitud.

Lo mismo se hace para la porción derecha.
Se traza el dinámico para estas tres fuerzas, cuyos va­

lores son:
Fj =  1.400; F  =  1.000 y F , =  1.400 k.

de suerte que el sistema es simétrico con relación a la mitad 
de la viga.

Luego se traza el funicular de polo P  y cuyo lado de 
cierre podemos hacer de antemano horizontal: puesto que por 
ser simétricas las cargas se conocen las magnitudes de las 
reacciones de los apoyos, que son iguales entre sí e iguales a 
la mitad de la carga total; de lo contrario, habría que cal­
cular por medio de las ecuaciones (28) y (29).
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X  =  Y 3.800 1.900 k.

Este funicular y su lado de cierre se índica en la figura 
con líneas de puntos.

Hecho esto, se hace las modificaciones en el funicular, 
relativas a carga uniforme, con dos arcos de parábola, tan­
gentes a los lados del funicular.

Entonces se localiza el lado de cierre del funicular co­
rrespondiente a viga empotrada, calculando los momentos de 
empotramiento en los apoyos; así mismo por la simetría de 
la carga, resulta:

«

f t p l- F a b 2k L =  k, =  —
12 l-

y como a —  b —  se tiene:

k _  k   _ E L
1 Kí 12 8

sustituyendo los valores numéricos dá:

fc = f c  =  _  _400 X  v  __1.000 X _ L =  _  2,508 k, m, 
1 - 12  8

Este valor llevamos, a la escala adoptada, sobre las ver­
ticales de los apoyos, y después se une estos extremos. A 
esta línea debemos referirnos para la avaluación de los mo­
mentos.

Como se ve en la figura, el momento máximo positivo 
ocurre en la mitad de la viga y bajo la fuerza, y esta ordena­
da vale 1.700 k. m.

Este valor podemos comprobar por medio de las fórmu­
las ( 1 1 ) y (20 '), que dan, al sumarlas, la siguiente expresión:
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¿Mm — +  y  (35)

que con los datos numéricos tenemos:

_  400 X 7 -  +  I-000 X  7 =  , m k. m
24 8

o sea 8 k. m. de diferencia, lo que es despreciable.
En lo que atañe a los esfuerzos cortantes, el trazado del 

diagrama no tiene dificultad alguna; se trata primero con las 
tres fuerzas concentradas, y después se hace la modificación 
correspondiente a carga uniforme, como se observa claramen­
te en la figura 80.

El máximo se produce en los apoyos, con signo con­
trarío, e igual a las magnitudes de las reacciones.

NOTA.—Se debería también estudiar aquí a la viga empotrada en un extremo y simplemente apoyada en el otro; pero como ella es de empleo muy raro, omitimos para no extendernos demasiado.
(Continuará)


