Por el Profesor de Geometria Analitica e Hi
draulica*

Sr. Rafael Anibal Jarrin

Procedimiento para cons-
truir la curva definida por
una ecuacion, Yy estudio

analitico



PROCEDIMIENTO PARA CONSTRUIR LA CURVA
DEFINIDA POR UNA ECUACION, Y

ESTUDIO ANALITICO

| —Curva definida por una ecuacion cualquiera de

la forma y = f (X)

Sabemos, por el analisis matematico, que la funcion
y = f(x) es continua para todos los valores de x con los
cuales su primera derivada P (x) tenga un valor determinado
y finito. Ademas sabemos que el coeficiente angular de la
tangente en un punto M (x0, y0), de la curva representativa,
es el valor que toma P (x) para x = x0,y que si se tiene:

P (xn = o, la tangente es paralela al eje ox,
P (x0 = =+ oo, la tangente es paralela al eje oy,

P (x0) o, la funcion y es creciente en la proximidad del
punto M,

P (x0) <C o, la funcidn y es decreciente en la proximidad de M.

Dentro de un intervalo (a, b) de la variacion de X, en
que Yy sea continua, la raiz a,, de la ecuacion derivada f (x)
lgualada a cero, correspondera a un maximo de y si para
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dicho valor a, dado a x, f (x) se anula pasando de un valor
positivo, para valores de x inferiores a la raiz, a un valor
negativo, para valores de x superiores a dicha raiz. Lo que

quiere decir que, la funcion y sera primero creciente y des-
pues decreciente.

La raiz a, de f (x) correspondera a un minimo de Yy, S

para dicho valor a, dado a x, f (x) se anula pasando de un
valor negativo a otro positivo.

Tomando en consideracion lo que antecede, se ve clara-
mente que el procedimiento para construir una curva: y = f(x),
en coordenadas rectangulares, debe ser el siguiente:

lo. Desechar los valores de x para los cuales la funcion
deja de ser definida; por ejemplo, la funcion y = }/X no es
definida para valores negativos de X, porque entonces Yy ad-
quiere valores imaginarios. Por la misma razon, la funcion

y = |/(x— 1) (x — 4) tampoco es definida para valores de
X comprendidos entre 1y 4; luego esta curva no tendra nin-

gun punto en la parte del plano comprendida entre las para-
lelas a oy:

X = 1 X = 4,

20. Buscar los valores de x con los cuales la funcion
y deja de ser continua.

30. Calculada la funcidon derivada, se buscara igualmen-
te como hemos hecho con la anterior, los valores de x con

los cuales deja de ser definida o continua. Tomemos otro
ejemplo; sea la funcion:

1 /1 + X
r= >V rn'

calculando la derivada, tendremos;:

v> {/*+X ] XVl - X - X- + X +
yi-X (I -X-yT'Tx Yy(-J-X) (t-X)]

Las funciones y y y seran definidas si el subradical de
cada una es positivo, lo cual se tiene sélo para valores de X
comprendidos entre — \y -\- 1. Para x = =+ | se tiene:
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y''= £ Oo, y entonces Yy y Yy dejan de ser continuas. Cuan-
do yf es discontinua, toma generalmente un valor infinito.

40. Buscar los valores de x para los cuales se tenga.
y = 0, Yy = °0 0V = 0og. En el ejemplo anterior se tie-
ne.y = o0, para X = 0V para X = 1,y = o0q, para X = |,
que es unha asintota.

50. Buscar las raices de la derivada, con las que se
anula, blen sea cambiando o sin cambiar de signo.

60. Ordenando de una manera creciente, los valores asi
obtenidos de la variable independiente x, se obtendran inter-
valos consecutivos, dentro de los cuales, o la funcidbn no es
definida, o es continua y creciente, o bien, continua y decre-
clente, para saber lo cual tendremos que averiguar el signo
que tenga la primera derivada dentro de cada intervalo.

70. Calcular los valores correspondientes de la funciony

para los valores particulares que asi hemos obtenido de Ia
variable Xx.

A este procedimiento tendremos que afadir el estudio so-
bre la concavidad que presenta la curva hacia uno de los
ejes de coordenadas, la determinacion de sus puntos de In-
flexion y la de sus asintotas. Averiguaremos también la si-
metria que tenga la curva, lo cual abrevia su construccion.

Por lo pronto, ilustremos lo dicho con un ejemplo.

Construir:

+i/(x-1) (x-2)

Esta curva es simetrica con relacion al eje x X, pues, a
todo punto M (X, y) corresponde otro M' (x, vy), a igual
distancia de dicho eje. Bastara construir la rama de curva:

X
[7(x-1) (x-2)

Calculemos la derivada:

* yix-1) (x-2) X (2x - 3) 4 - 3X
y (x-1) (x-2) 21/(x- N1 (x-2)* 217 (x-1)"(x 2)!
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Las funciones y y y son definidas y continuas si se tie-
ne:. X < 1 0 x > 2, es decir para valores de x exteriores al

intervalo (1, 2). Para x = 1se tiene: y = y' = o0(, para
X = 2, y' = 00
Las dos paralelas a oy: x = 1 (recta c'c), y X = 2 (rec-

ta D'D), son asintotas de la curva. (Fig. 1).

Para x = o, la funcion se anula pasando de un valor
negativo a otro positivo, porque entonces la derivada tiene
signo positivo.

4
El valor x = que anula el numerador de y', esta

dentro del intervalo (1, 2) en el que la funcién y su derivada
no son definidas. Y' se anula para x = d °0, pues, enton-
ces se tiene:

t 4 — 3X X 3
Y 21/(x- 1)1 (x- 2)1 2(x — 1) (x — 2) Ix- 1. x-2

X X

+ 3
OO_O
orde-

y el valor que correspondea lafuncidon es: y J,
B'B res-

nadas de las asintotas paralelas a x'x (rectas A'A
pectivamente).

En el siguiente cuadro hacemos constar también el signo
de la derivada de y\ o sea y”, porque segun dicho signo sa-
bremos las variaciones de y\ pues, en los intervalos de con-
tinuidad, si y" > o, y* es funcién creciente; si y” <Co, y' es
funcion decreciente. Ademas, como veremos mas adelante,
por el signo de y” se deduce el sentido de la concavidad de
la curva.

+
y

En la funcidn que estudiamos:

tt 614t - 1 - 2+

7 4(Xx— 1y (x —2);j-r

C Bx —4) B(x — 1y (x — 2)3+ 3(x — 2)3 (x — 1)1
4 (X — )3 (x — 2)3 J/(x-1)3 (x-2)1
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y simplicando:

it 12xJ — 33X 24 24 “576
y 4/ (x- ty>(x-2 4/ (x- )" (x- 2)5

12 (x B2 6

X y y' y
— Oo 0 1
N crece -f- crece —
0] 0
T crece -j- crece -f-
1 +  °0 + °0

La curva no tiene ningun

punto en este intervalo

2 — Oo — Oq
n crece —  decrece -~
+ °0 O =
Vemos que Yy~ estambien definida y continua, fueradel

intervalo (1, 2), y su signo es siempre positivo fuera de di-

cho intervalo.
Los valores particulares de x que hemos obtenido, or-

denados de — °o a °0, SonN:
— °o0, 0, 1, 2, -f-o00, los mismosque figuran con las
variaciones correspondientes de y y y en el cuadro, el cual

facilita la construccion de la curva.
Como queda dicho, la curva:

X

4 [/ (x-1) (x-2)

simétrica de la anterior con relacion al eje x x, esta repre-
sentada con linea de puntos.
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Escala cle
Coorofc rtacias

Sentido de la concavidad de una curva y determinacion

de sus puntos de inflexion

Sea una curva: y = f (x), (figura 2), en la cual conside-
ramos un punto M (x0, y0) cuya abscisa esté dentro de un
Intervalo en el cual la funcion y sus derivadas sean definidas
y continuas; luego, f (x) y f" (x) tendran un valor determi-
nado y finito: y'0, y”Q para x = Xn.
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La tangente (T) en el punto M tiene por ecuacion:

Y —y0= y'0 (X — x0), considerando X y Y como coorde-
nadas corrientes de esta recta.

Tracemos una paralela variable al eje oy, que pase por
la proximidad de M y que cortara ala curva en un punto
M', a la tangente (T) en un punto Ny al eje ox en P.
El punto M' se encontrara encima delatangente (T), como
indica la figura, si se tiene:

PM"— PN = NM'">o0 ;

y Si esto sucede en la proximidad de M, se dice que el sentido
de la concavidad de la curva, en M, es hacia la y positiva.
M' estara debajo de (T) si se tiene como en la figura 3:

PM"—PN = NM'< o;

y si esto sucede en la proximidad de M, la concavidad sera
hacia la Yy negativa.

Pero, este segmento orientado NM' es igual a la dife-
rencia entre la ordenada y del punto M' de la curva y la
ordenada Y del punto N de la tangente (T), correspondien-
do ambas ordenadas a una misma abscisa. Estas dos orde-

nadas son:
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de donde:
/ "\

() NM' = vy - Y =vy- yoOoX + vy, x0- vy, = 9 (x).

Claro esta que la funcion z (x) se anula para X = X, , O sea
cuando PN pase por el punto M (X, Y().

Consideremos primero el caso de la figura 2, en el cual
la funcion z (x), para valores de la variable inferiores a xQ
tiene signo positivo y _es una funcion decreciente (el valor del

segmento NM', al acercarse a M, va disminuyendo); para va-
lores superiores a x0 tambien tiene signo positivo, pero en-
tonces es una funcidon creciente (el valor de dicha funcion,

segmento NMr, va aumentando cuando X aumenta).
Segun la teoria de la variacion de las funciones,

NM'= z(x) se presenta en el caso de un minimo para
X = X(. Las condiciones necesarias Yy suficientes para este
minimo seran que la primera derivada @ (x() = 0, y que en
las derivadas siguientes, la primera que no se anule para

X = X, sea tomando un valor positivo y de un orden par
de derivacion.

Derivando la ecuacion (1) tendremos:
(2) t (x) = y'—y'0o= f(x) — £(x,)

derivada que se anula para x = x0, cumpliéndose asi la pri
mera condicion comun para un maximo 0 un minimo.
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Derivemos la ecuacion (2):

3) Y (x)=y" = 1 (x)

Si esta segunda derivada toma un valor positivo para
X = X0, quedan cumplidas las condiciones necesarias y sufi-

cientes para el minimo de la funcion NM' = z (x), y enton-
ces ia curva y = f (x) tiene, en la proximidad del punto M, su
concavidad hacia lay positiva.

| También suce@eré lo mismo si z7 (xn) = P gx(l)/: 0,
siempre que en la derivada tercera se tenga:

Gw (x0) = fm (x0 = o, y en la cuarta:

qv (x0) = fv (x() > o, a fin de cumplirlas condiciones
del minimo, cuyo razonamiento se prolonga como gqueda in-
dicado (NoOtese que a partir de la segunda derivada, las de z (x)
son identicas a las de f (x)).

De una manera analoga estudiemos el caso de la figura 3,
en el que, mas concisamente, diremos siempre en la proxi-
midad de M:

NM' = @(x), es una funcion continuade valores ne-
gativos y creciente cuando x X,

N NMP = z (x), es una funcion continuade valores ne-
gativos y decreciente cuando x - xO0.

Luego se presenta el caso de un maximo de z (Xx), para
X — X0, y siempre que se llenen las condiciones necesarias
y suficientes para dicho maximo la curva tendra, en la proxi-
midad de M, su concavidad hacia la y negativa.

De dichas condiciones, en ia ecuacion (2) hemos visto
que se cumple la primera: P (Xu) = o0, y solo nos restara sa-
ber si la primera de las derivadas siguientes que no se anula,
para X = X, , €S de un orden par de derivacion y menor gue
cero.

Si esto se cumple en la derivada segunda, con ia de-

sigualdad:

r M = w < 0

quedan llenas dichas condiciones.
Sucedera lo mismo si:

P (X)) = P" (x0) = o, fv (xo) < o.
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En la curva que construimos (figura 1)

Y= F T v ix— 1) (x -~ t

vimos que y” era siempre positiva para todo valor de x ex-

terior al intervalo (1, 2); luego dicha curva es convexa Vy
presenta su concavidad hacia la y positiva.

En la simeéetrica de la anterior:

X
" Vix —1) (x—2)°

fuera del mismo Intervalo se tiene: y” < o, luego tiene su
concavidad hacia la y negativa.

Nos falta solo que estudiar el caso en el cual:
@’ (x,,) = o, (x0) #=0, o lo que es lo mismo:
P (x0 = o, P" (x0) 0,
y generalizando mas la cuestion, el caso en el cual:
f* (x0 = ?7 (x0) = ... = f)(x0) = o,
fln+ i) (x0) + o,

siendo n par; de manera que la primera derivada que no se
anula, a partir de la 2a, ypara x = Xxu, es de un orden impar
de derivacion.

Resulta entonces que la funcion f' (x), del coeficiente an-
gular de la tangente, pasa por un maximo 0 un minimo,
para X = x0, segln que se tenga respectivamente:

fin - 1) (Xo) < Qf  0: ¥Yn (x0) > o;

pues, la primera condicion, para dicho maximo o0 minimo,
f” (x0) = o, ya la suponemos llena. La funciobn (Xx) con-
siderada en los casos anteriores, en el presente no pasa ni
por un mMaximo ni por un minimo, para x = XxO0.
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Para fijar las 1deas, hagamos n= 2y
rm (x0 I P’ (x$ > o;

entonces, P (xn) es un minimo del coeficiente angular de la
tangente, P (x), y como Xxn esta encerrado dentro de un in-
tervalo (a, b), b a, en el cual f(x) y sus derivadas son
definidas y continuas, se tendra que en la proximidad del
punto M (x0, y0) y para x < xn, P (x) esuna funcion de-
creciente, y que para x > x0, f (x) es unafuncion creciente

(una funcion al pasar por el valorminimo, primero es de-
creciente y despuées creciente).

Esto se efectuara en el caso de la curva de la figura 4,
y en la cual, el punto M (x,, vy,) se llama punto de inflexion.

(1)

Ademas, si para valores de x inferiores a x(), o sea den-
tro de un cierto intervalo (al, x0), P (x) es funcion decreciente,
entonces 1”7 (x) serd menor que cero, y el arco AM corres-
pondiente a la funcion y tendra su concavidad hacia la Yy
negativa;, y si para valores de x superiores a X,,, 0 sea den-
tro de un cierto intervalo (x0, b,), P (x) es funcidn creciente,
se tendrd que I,f (x) o, y el sentido de la concavidad de
MB sera hacia la y positiva. Luego, en el punto de in-

flexion, la curva atraviesa su tangente en M,
Empleando un razonamiento analogo veremos que Si

7 (x0) = o, vy P"(x0) < o,
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entonces f (x0) es un maximo de f (x), y la disposicion de
la curva en la proximidad del punto M (xt), y() sera como de
la figura 5.

Como consecuencia de todo esto, podemos dar la siguien-
te regla general relativa al sentido de la concavidad de una
curva y a la determinacion de sus puntos de inflexion:

SI en una curva y =—f (x) se tiene:

Itx0) = £’ (X,,) = ... = fln(x,,) = o,

* 4+ >(X,) 0,

si (n 1) es par, dicha curva es convexa en el punto de
abscisa xf,, y su concavidad sera hacia oy si

fin 1) 0, O hacia la y negativa si
fln -f i) (xn) < 0.

(Obsérvese que si (n -(- 1) = 2, la hipdtesis sera:

f (x0 = o, 17 (x0) 1= 0).

Si (n -J- 1) es impar, la curva tiene una inflexion en el
punto de abscisa x0; la disposicion de su inflexion serd como
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en la figura 4 si f(n (x0) > o, y como en la figura 5 si

f(n J < 0.

En general, la determinacion de los puntos de inflexion
de la curva y = f(x) se hard buscando las raices de P (x)

en los intervalos en los que la funcion y sus derivadas son

definidas y continuas.
Sustituyendo el valor de dichas raices en fm (x) se sa-

ora, por el signo de esta, la disposicion de la curva en el
ounto de inflexion encontrado, pudiendo también averiguarse

a concavidad antes y después de dicho punto.
Si P (x) no da ninguna raiz, la curva no tiene puntos

de inflexion,como sucedeen la de lafigura 1.
Ejemplo. Construir la curva:

£
y = ex (J. Tannery)
y estudiar su concavidad. (Figura 6)

Las dos primeras derivadas de y son:
: £
| X
1 e

XO) XOt

£ 1 1
t 1 2 X e e (2 x t 1)

X X

En esta funcidn y se presenta una singulaiidad. si x
tiende hacia cero por valores positivos, se tiene:

£

9
y — e = @

(E= Infinitamente pequeno positivo);
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y si x tiende hacia cero por valores negativos, resulta que

y =e =-—=—= 0

es decir que la rama de la curva gue se presenta con sus
abscisas negativas, se detiene en el origen. A esta singula-
ridad se la llama: punto de detencion.

En las derivadas, si x tiende hacia cero por valores

positivos, se tiene:
y' = = , y" o=«

, i O
y si por valores negativos, toman la forma cuyo verda-

dero valor vamos a buscar:

* TAV- X C

Calculemos el valor del denominador, haciendo 3

y que n tienda hacia el infinito; entonces:

. e N9 X X (n veces).

Ahora, busquemos el limite de

V n2= nn, tendremos: L nn= L n;

n

2Ln 15{3 2Ln) 2 _

Iim. L nn = = -f- = 0
n "’ (11)* n

(hemos aplicado la regla de U Hospital);
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luego IiIm n \f con lo que se tiene:
|
2e3= 3,y = 1L - o

- 2

| - 2S |- 0
! 0 X
f4 e

2°.

Calculando el valor del denominador, como en el caso
anterior, y empleando el mismo procedimiento hallamos que:

imnn= 1, £le 3 = — X X
> N n
\/n’ V nl
(n veces),

| _
6

sle3 = ¢ ; luego, y" = 0.

Encontramos, pues, que la funcion y y sus derivadas y
y y" son definidas y continuas para todo valor de x, menos
para X = 0. el eje oy, X = 0, es una asintota. La tangen-
te en el punto de detencion es el eje ox; peroa Ic O
no se le puede considerar como un minimo, pues
no de y* es siempre negativo y la funciony, 1 <
(para el minimo de y se requiere que “entl® e W ne?a-
en que y sea continua, yf se anule pasando e va
tivos a positivos).

También se anula y* para x = = ~» (jliejc°la”™ asin-
a la funcion el valor: y = », que es la ordenada de la asi

tota paralela a ox. (Recta A'A).
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Conforme a la teoria expuesta sobre la concavidad vy
puntos de inflexion, estudiemos:

ftt(x)\ — yt’ — ___e___(__2_X_.rw:_____0_

esta derivada se anula para

valor con el cual:

*
vimos que también se anula para x = — £ pero la funcidn

deja de ser continua. La curva tiene un solo punto de in-
flexion:

1(—y» —p)-
Para x > se tiene: y” 0, ¥ la concavidad es ha-
cia oy.
Para x < --—-- —se tiene: y” < o0, y la concavidad es ha-
cia oy'.

Los valores particulares de x que hemos obtenido, orde-
nados desde

— °0 hasta -f- °0, son:

con los cuales se dispone el cuadro siguiente:
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X yn y| y
— 0 1
decrece, — decrece, -f-
1 4
5 O 69 min. e = 0,135
.*
+ crece, — decrece
0 0
+ £
_too - Q] 0,0)
+ crece, — decrece, -j-
+ @ 0 1
e = 2,/18...

El procedimiento indicado para construir una curva
y = f(x) nos ha servido también para la determinacidn de
las asintotas, paralelas a oy o a ox, y ademas, la posicion de
la curva con relacion a ellas. Nos faltard solamente que de-
terminar las otras asintotas que puedan haber.

Sabemos que estas se determinan por medio de su coe-
ficiente angular ¢ y de la ordenada d, correspondiente al punto
de su interseccion con oy (ordenada en el origen). EI valor
de c se obtiene buscando en la ecuacion de la curva el limite

de la relacion — para x = + °0o; y el de d, después de en-
X
contrado el de ¢, buscando en la misma ecuacidon el limite de
(y — ex), para Xx = + °0. Se tiene:
¢'= lim. —, d = lim. (y — ex),
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para X = |_ °0, entonces, la ecuacion de la recta asintota sera:

ex H- d.
En la ecuacidn
i
e X
se tiene:
i
N\
, , X :
C=I|m.y = lim. ---=- = 0, para x = + X|
X X
£
d=Ilimy = Ilimex= 1 parax = + »e

entonces, la asintota sera: y = 1, que ya encontramos ante
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Mas adelante, al estudiar la teoria relativa a la construc-
cion de curvas dadas por una ecuacion entera de la forma:

f(x,y) =0

veremos también otro metodo para la determinacion de las
asintotas, y que sera aplicable a una ecuacion algébrica de la
forma: y = f (x), después de volverla entera.

Ciertas curvas pueden tambien admitir una curva asin-
totica. Sea:

fu (x)
/ t (x) '’

donde suponemos que fm(x) y f,, (x) son polinomios enteros
en X, de grados m y n respectivamente, ademas, m>n + 2,
oOom = n -J- p, siendo p un numero entero por lo menos igual
a 2. Efectuando la division de la relacion dada, tendremos:

) v —finfe)= f X)j R /¥

O
1 y - f.(X) W f, (X)

donde fp (x) es un polinomio entero en X, de grado p, y R (X)
es tambien entero, pero de un grado inferior a n. La curva
dada por esta ecuacidon (1) admite a f, (X) como curva asintoti-
ma. En efecto, si construimos:

(2) y{= fP(x),

y consideramos la diferencia Yy — y | entre las ordenadas de
dos puntos de estas dos curvas gue tengan una misma abscisa
X, dicha diferencia tiende hacia cero para X = + ~, pues se

tiene entre (1) y (2):

fraccion en lacual el grado del numeradores inferior  al del
denominador, y porconsiguiente tiende hacia ceropaia
X = x »,

Lo que quiere decir que las ramas infinitas de la curva
12 ) tienden a contundirse con ciertas otras de la curva (1).
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Decimos entonces que la (2) es curva asintotica de la (1)

Ejemplo. Construir la curva:

N - = X- + X Ir_ (‘"Figura 7)
Calculemos, sus derivadas:

. 5x4(x!— 11— 3X’ 2x' — b5x| X1(2x3— 5)
(X" — J)- (xy — 1)2 ~ (x1— 112

' (x; —1) (14x% — 20x,) -f 6x2(5Xx] — 2x°)

y = (xa— 1)3 ’

2Xx3 (x° — 2x3 + 10)
y'o~ (x3— 1)3

La funcion y sus derivadas son definidas y continuas, pa-
ra todo valor de x, menos para el que anuia a cada denomi-

nador, x = 1. La paralela a oy: x = 1 (recta AA'), es una
asintota; y segun lateoria que acabamos de exponer, la pa-
rabola: y, = x", deejeoy (representada con linea de pun-
tos en la figura 7), escurva asintotica de la propuesta; en
efecto, para x = + ~, la diferencia:
Xji— 1 X — \'
X 2

entre las ordenadas de una misma abscisa X, tiende hacia
Cero.

La curva pasa por el origen, y como yf se anula para
X = 0, es tangente en este punto al eje ox y a la parabola
asintotica.

También y” se anuia para X = o.

Al estudiar la concavidad, observemos primeramente que
el factor de y”,

X, — 2Xj] + 10,

«



UNIVERSIDAD CENTRAL

es siempre positivo; en efecto, si hacemos: z = xi, 72= xG
dicho factor equivale al siguiente trimonio de 2o grado en Z

22— 27 + 10,

cuyas raices son imaginarias y el coeficiente de z2 positivo.
Luego, este trimonio es siempre positivo para todo valor

de z y por lo tanto, también lo serd el factor considerado,
para todo valor de X.

Sigamos investigando el signo de y”:

Para x<o, Yy" es positiva, y la concavidad es hacia oy.
Para valores de x comprendidos entre oy 1, y” es ne-
gativa y la concavidad es hacia oy’

Para x > 1, y" es positiva y la concavidad es hacia oy.

El origen es, pues, un punto de inflexion; el sentido de
la concavidad de la curva cambia al atravesar este punto.

3

Para x = ]/"8*>y* se anula pasando de valores negativos a
positivos, y la funcién y pasa por un minimo que es:

En la ecuacion de la curva, la relacion:

V X

X X" — 1
crede indefinidamente para x = x « ? luego existe, ademas
de la asintota x = 1, una direccion asintotica doble, parale-

la a oy. En este caso se tiene:

y = o, para X —1; a, Yy se dice que las asintotas
respectivas se han alejado hacia el infinito, y que la curva
presenta dos ramas parabdlicas en la direccion oy. (Toda
parabola tiene dos ramas infinitas correspondientes a una di-

reccion asintotica paralela a su eje de simetria).
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crece, —

O, MmaxX.

decrece, —

crece, -f-

349

23

decrece, +
0

decrece, —

— 3

+ 03

decrece, -f-

3 1
5 n/6,25,

3 1 minimo

1

crece, -+

H »

[I. Curva dada por una ecuacion entera de la

forma: f (X, y,) = o.

Cuando esta ecuacion sea de facil resolucidon con respec-
to a una de las coordenadas, por ejemplo yf podremos formal
funciones explicitas, equivalentes en conjunto a la propuesta.

Por ejemplo, sea la ecuacion de 2o0. grado eny:.
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Resolviéndola, tendremos:

+ X

V. (X-1) (x-2) =

0 sean las dos funciones explicitas:

V(ix —1) (x—2) ’ V(ix —1) (x — 2

cuyas curvas construimos en la figura 1. EIl conjunto de es-
tas dos curvas representa la de la ecuacion dada.

Para el caso en que no sea posible, o sea muy dificil, for-
mar explicitamente las funciones y,, y.2>.. y.), recurriremos a
otros meétodos para la construccion de la curva.

Recordemos que el coeficiente angular de la tangente, en
un punto M (x0, y0), de una curva f (X, y) = o0, esta dado
por la relacion:

B S Uit By
f/ O,,, V,)

siempre que las derivadas parciales no se anulen ambas a la
vez para los valores x(, y(; entonces y|] tendrd un valor finito
o Infinito, y M (x0, y() se llama punto ordinario.

Si Ygtomala formael punto M (x(, y0) se llama

singular,

La determinacidon de los puntos singulares de la curva
se hara, pues, buscando los valores de x y de y que verifi-
quen las tres ecuaciones siguientes con dos incognitas:

f(x, y) = o ™ I(X,y) = o f/ (X, y) = o

Las tangentes en estos puntos, buscaremos por otro mé-
todo, cuya teoria no la podremos exponer claramente antes de
lecordar algo sobre las funciones homogéneas y algunas de
sus propiedades, y sobre un haz de rectas que partan del ori-
gen, todo lo cual nos servira también para la teoria de las

asintotas en esta clase de curvas.
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Respecto a la concavidad e inflexion, la teoria expuesta
anteriormente es aplicable a la curva f(x, y) = o, en todos
los puntos ordinarios cuya tangente no sea paralela a oy. En
este caso, siendo y funcion implicita de X, sus derivadas ten-
dremos que calcular, como nos ensefia el Analisis, por medio

de las ecuaciones que forman las derivaciones sucesivas de la
ecuacion de la curva, o sean:

fx (x,y) +y*ty(x,y) = o

{% (x,y) + 2f Vsr (x3y) +y'2 X>) +y"  (>y) = o

Simetrias

Hemos dicho que para abreviar la construccion de una
curva, debe averiguarse la simetria gue presente.

. Sien una curva y = f(x), o f(x,y) = o, la orde-
nada y no cambia de valor con la transformacion de x en —x,
la curva es simétrica con relacion al eje oy; pues a todo pun-
to M (X, y) corresponde su simétrico M' (X, y) con res-

pecto a dicho eje.

Ejemplos: lo. Las curvas: y = €0S X,

X X

y =y (e alffe a)p

son simeétricas con respecto al eje oy.

20. Toda curva algebrica que no contenga en su ecua-
cidbn sino potencias pares de Xx, es simétrica con relacion a

eje oy. |
II. Sienwunacurvay = f(x), of (X, y) = o, la trans-

formacion de x en — x trae consigo la de y en yt a
curva es simetrica con relacion al origen; pues a todo punto

M (x, y) corresponde otro: MP( X, Yy)> simetiieo e an
terior con respecto al origen o.
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Ejemplos. lo. La curva y = sen x es Simeéetrica con
respecto a o.

20. Toda curva algebrica en la cual todos sus terminos
sean, solamente de grado par, o solo de un grado impar, tiene
simetria con respecto a 0. [Estan en este caso las curvas:

y = X5, AxyJ+ Bx'y2+ Cx'y + Dx2+ E = o.

(Observese que una ecuacion homogénea, cuyos termi-
nos sean soOlo de grado iImpar, carece del termino constante,
y por consiguiente la curva respectiva pasa por el origen, que
es centro de simetria y punto de inflexion).

En los casos |y |Il, para construir la curva se conside-
raran solamente los valores positivos de x, y se concluira la
construccion teniendo en cuenta la simetria.

1. Si una curva f(x, y) = 0, contiene en su ecuacion
solo potencias pares de y, la transformacion dey en — y no

cambia el valor de x, y la curva es simetrica con respecto al
eje OX.

Ejemplo. La curva ya construida en la figura 1, cuya
ecuacion vuelta entera es:

y2(x — 1), (x —2) —x- = 0

En este ultimocaso, para construir la curva seconside-

raran solo los valores positivos de y, y se tomaraen cuenta
la simetria.

Funciones homogéneas.

Se dice que una funcion f (x, y,...) de varias variables
es homogenea y de grado m, si se tiene:

(1) f(tx, ty,...) ==tmt(X,y,...),

siendo t una cantidad cualquiera.
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Ejemplos. La funcion:
f(x, y) =Ax2+ Bxy + Cy2
es homogénea y de grado 2, pues, segun la definicion se tiene:

f(tx, ty) ~ AtX2 + BtXy + Cty2— t2f (X, y).

La funcion:

es homogénea y de grado — 2.
Se ve facilmente que:

1°.  Si se multiplican entre si varias funciones homogeé-
neas, el producto sera otra funcion homogénea de grado igual
a lasuma de los grados de las funciones.

20. La potencia n de una funcion homogénea de grado
m, es otra funcion homogénea de grado nm.

30. Consideremos una funcion homogénea degrado m,
y en la identidad (1) que nos sirve de definicion hagamos

t = >  tendremos:

X >-«» , Wb A ><

uego, una funcion homogénea de grado m, dividida por la
potencia m de una de las variables, por ejemplo por xm da
por resultado otra funcion que no depende sino de las rela-

ciones de las otras variables a X.

Haz de rectas gqgue partan del origen.

En el plano, un haz o conjunto de m rectas que partan
del origen esta representado por una ecuacion entera en X y y*

homogéenea y de grado m.
En efecto, sean las m rectas:

y —¢, x =0 y—@x =0 , Yy —cax - o.
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El producto de los primeros miembros nos da la siguien-
te ecuacion entera en x yy, homogénea y de grado m:

(G (y —c¢ x) (y - ¢ x) (y —¢Cu X) = 0,

y es evidente que, las coordenadas de todo punto que perte-
nezca a una de las rectas nulitaran a esta Ultima ecuacion,
y las de los puntos que no pertenezcan a ninguna de éllas,
no la nulitaran, puesto que no nulitan a ningun factor. Luego
la ecuacion (1) es la del conjunto de las m rectas.

De estas m rectas, si hay n que se confundan entre si
con el coeficiente angular c¢,, en la ecuacion (I} se presentara
un factor: {y—<1 x)n, con el cual el enunciado subsiste. lgual-
mente, si entre las m rectas hay n de ellas que se confunden
con oy, en la ecuacion (1) se presentara el factor. xn con el
cual queda siempre entera, homogenea y de grado m.

Probemos la proposicion reciproca: Una ecuacion entera
en X yy, homogenea y de grado m, representa un haz de m
rectas, distintas o confundidas, reales o imaginarias, gque par-
ten del origen.

En efecto, ordenando la ecuacion considerada segun las

potencias decrecientes de y, sera:
(2) f(x,y)=Anym+ Axyl''lx-j-A.,, y mM2x2-(-...+ AIxm=o.

Supongamos primero que el coeficiente de yn no sea nulo.
En esta ecuacidon, para X = o0, se tendra y = o0, solucion gque
corresponde al origen. Si con cualquier otro valor de x, di-
vidimos ambos miembros de (2) por xm tendremos:

(3) An (2 ) + AL ()" + A, = o

Considerando a . como si fuera una sola incognita, la

ecuacion (3) de grado m tendra m raices, distintas o multi-
ples, reales o Imaginarias, o sea, las siguientes soluciones:
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en las que cada una representa una recta que pasa por el
origen.

Si en la ecuacion (2), A)= o, A, =0, sacando X en
factor y dividiendo ambos miembros por x"11 tendremos:

(4) X + Am O

ecuacion cuyo primer miembro se descompone en estas dos:
X = 0, 0 sea el eje oy, y el factor entre corchetes que repre-
senta, segun lo que acabamos de ver, m-1 rectas distintas de
oy y que parten del origen.

Si A( — A] — o, se sacara x2en factor que representara
dos rectas confundidas con oy; y asi sucesivamente. Queda
pues probada la proposicion reciproca.

Observemos que los coeficiente angulares y finitos de las

: : . y
rectas estan dados por las raices de la ecuacion (3) en—,y

si el haz tiene una o varias rectas que se confundan con oy, el
primer factor x" de una ecuacion de la forma (4) representara

dichas rectas de coeficiente angular infinito.
Por lo visto, si en la ecuacion (2) del haz de rectas susti-

tuimos x por 1y vy por c, las raices de la ecuacion resultante
en C:

f(1, ¢c) = o,

seran los coeficientes angulares finitos: ct, c2, cm de
dichas rectas. En el caso de que una de estas raices g sea

Imaginaria, tendremos:

C = — a + bi, o sea:
1 X

y = (a + bi) x,

y la recta correspondiente es imaginaria.
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Tangentes en los puntos singulares de una curva de ecuacion

entera: f (X, y) = o

Hemos visto como se determinan estos puntos; ahora,
para determinar también las tangentes en cada uno de ellos,
traslademos previamente el origen de coordenadas al punto
singular considerado y apliguemos la regla dada por el si-
guiente teorema:

Si una curva de ecuacion entera f(x, y) = o0 pasa por
el origen, ella admite en este punto una o varias tangentes,
reales o imaginarias, distintas o confundidas. EIl haz de tan-
gentes esta representado por el grupo de terminos de menor
grado, igualado a cero, de la ecuacion de la curva.

En efecto, la curva carece del término constante, y agru-
pando los términos que tengan un mismo grado en funcio-
nes separadas sefialadas con indices n, n -f- 1, ... de su
respectivo grado, tendremos:

(1) F(x,y)= (X y) + fnTi(x y) + ... +
fm(x, y) = o.

Como la curva pasa por el origen, el coeficiente angular
c de la tangente en este punto sera el limite de la relacidon

— cuando Xx tiende hacia cero, en la ecuacion de la curva,
X

Sea, pues, la relacion variable:

X

en la que cf tiende hacia ¢ cuando x tiende hacia cero.

Tendremos: y — ¢* x, que sustituyendo en la (1)
nos da:
(2) f(x,c'x)=="fa(x,c'x) 4"m+ 1(x, C'x) + ... +

Fofm (X, cfX) = 0.

La funcion homogénea y de grado n,f,, multiplicada y
dividida al mismo tiempo por x" se hace:
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xnf, (X, ¢* X)

e X'f1,(1,¢")

(Vease lo sentado sobre funciones homogéneas, 3.°).
Transformando de una manera analoga las demas fun-
ciones de laecuacion (2), esta se vuelve:

f(X,c'x)= X (J, )+ Xn+Jfn L (1, cO + -f
+ x"1fm(1, ¢c') = o,
que dividiendola por xn
(3) f,(i,c') f~x h+1i(1, c') -f- T xm~nfm(1,c')~ o.

Cuando x tiende hacia cero, el limite de la ecuacidon
(3) sera:

(4) fi (1, ¢c) = o

ecuacion en ¢ cuyas raices reales o imaginarias, distintas o
multiples, son los coeficientes angulares de las tangentes res-
pectivas, coeficientes que corresponden a la ecuacion del haz

de rectas:
(5) f, (X, y) = o;

con lo cual queda sentado la legitimidad de la regla dada.

Observacion: La ecuacidon (4) no da los coeficientes an-
gulares infinitos, los cuales se deducen de la ecuacion (5),
como hemos visto en la teoria del haz de rectas.

Ejemplo, Volvamos a tomar la curva de la figura i,
cuya ecuacion vuelta entera es:

(a) Fx,y)=y"x—171 K 2) x"=o0
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Para determinar los puntos singulares que pueda tener,
calculemos sus derivadas parciales que igualaremos a cero:

(b) b (x,y)=y2(2x-3)-2x =0

(c) fulx,y) = 2xx—1) xX—=2)y =0

y busquemos las soluciones comunes a (a), (b) y (c). Las
de (c) son:

X

|
X
[l
_I\J
<
[l

de las cuales, las dos primeras no verifican a las ecuaciones
(a) y (b), pero la tercera, y = o, si las verifica, dando cero
como valor correspondiente de x; luego, el origen es el Unico
punto singular de la curva. Para determinar las tangentes
en este punto, apliqguemos la regla dada por el teorema an-
terior. EIl grupo de terminos de menor grado de la ecuacion
(a), lgualado a cero nos da:

>y S

que es la ecuacion del haz de tangentes, o sea:

X
1/2

+

con lo que vemos que la curva admite en el origen dos tan
gentes, cuyos coeficientes angulares son respectivamente:

1 1
\~2 y ~ [T o

A este punto singular se lo [lama punto doble a tangen-
tes distintas, pues, en este caso pasan por dicho punto dos
ramas de curva.
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Asintotas de la curva dada por una ecuacion entera:

f (x>y) = o.

Asintotas paralelas a oy. S€ las determina por la re-
gla siguiente: Las abscisas de las asintotas paralelas a oy son
las raices del coeficiente de la mayor potencia de y (coeficien-
te que sera un monomio o polinomio en x) de la ecuacion

de la curva.
En efecto, esta sera:

£0,y) = y"1f00) + y'11f (x) + ... -H» M = o,

y dividiéndola por y";

O + * )+ o+ (=

En esta ultima ecuacion para quey alcance un valor in-
finito se requiere que:

0 (X) =

cuyas raices seran las abscisas de lasasintotas buscadas.

Ejemplo. Tomemos el mismo anterior, donde se tiene
que lasraices del coeficiente de la mayor potencia de y son:

X = 1, X = 2,

abscisas de asintotas ya encontradas.

Asintotas no paralelas a 0Y.

Vamos primeramente a determinar las direcciones j15*11
toticas de la curva* y despues de conocidas estas, la oi ena

da en el origen para cada asintota.

1°.  Teorema: El haz de Rectas que parten del origen,
daralelas respectivamente a las direcciones asintoti< as que ten



3(10 ANALES DE LA

ga una curva, dada por una ecuacidn entera, esta represen-
tado por el grupo de términos de mayor grado, igualado a
cero, de dicha ecuacion.

En efecto, la ecuacion de la curva puede escribirse en

grupos homogéneos de grados m, m-1, m-2, 0, en la for-

ma que sigue:

(1) f(x, y) = fm(x, y) + fm,(x, y)-f ... + Cte. = o.
Si multiplicamos y dividimos al mismo tiempo cada uno

de estos grupos respectivamente por x™, x"11] X, la ecua-
cion (1) se transforma en la siguiente:

(2)  XWfm A1, “ A orX' fmj ALY A X .j-Cte. O

(Vease lo dicho sobre funciones homogéneas, 30.)
Sabemos que el limite de la relacion ~ > para x =

es el coeficiente angular ¢ de una asintota.
Sea pues la relacion variable:

en la que cf tiende hacia ¢ cuando x tiende hacia el infinito.
Entonces, la ecuacion (2) después de dividirla por x' se hace:

3)  f. (G- fmj (1, cOH* ofn.-(i -

Cuando x tiende hacia el infinito, el limite de la ecua-
cion (3) sera:

(4) fm(l, ¢c) = o,

ecuacion en c¢ cuyas raices leales o iImaginarias, distintas o
multiples, son los coeficientes angulares de las asintotas res-
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pectivas, coeficientes que corresponden a la ecuacion del haz
de rectas:

(5) fm(x, y) = o.

Observacion: La ecuacién (4) no da los coeficientes an-
gulares infinitos, los cuales se deducen de la ecuacion (5)
conforme hemos visto en la teoria del haz de rectas.

20. Conocidos ya los coeficientes angulares de las asin-
totas, vamos a determinar la ordenada en el origen para cada
una, por el siguiente método:

Siendo d la ordenada en el origen de la asintota de coefi-
ciente angular c, esta tiene por ecuacion:.

(1) y = ex -f- d.

Cortemos la curva dada, f(x, y) = o, con la recta (1),
buscando la condicion para gue por lo menos un punto de In-
terseccion se encuentre en el infinito.

T endremos:

f (x, ex -]- d) = o,

ecuacion en X que ordenada segun las potencias decrecientes
toma la forma:

Xx1PO(d) + X“JPiOO + .. + PAW = ©

y dividiendola por xn

(2) P, (d) H t- PL(d) -f- .. + PXs— = o

Un punto de interseccion se encontrard en el infinito,
cuando su abscisa sea infinita: entonces, el limite de la ecua-

cion (2) para x = » sera;
(3) PO (d) = o

polinomio o0 expresion en d, cuyas raices seran las ordenadas
en el origen correspondientes al coeficiente angular c.
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Este metodo para determinar las asintotas es muy eficaz,
eficacia que no se consigue siempre al buscar el limite de las
expresiones:

){—.y—ex, para X = » ,

en las ecuaciones complicadas por el grado de la curva.
Ejemplo. Sea la curva:
f(x, y) = y*(2x — I) — x1 xJ= o.
El coeficiente de la mayor potencia de y es:
2X — 1,

expresion que tiene por raiz:

e

osea, la abscisa de la asintota paralela a oy.
Para encontrar las demas asintotas, igualemos a cero el
grupo homogéneo:
(a) 2Xy,— x1= x (2y}— x3}) = o,

que representa el haz de direcciones asintoticas de la curva.
En este haz, la recta x = o, valor que verifica (a), co-

rresponde a la direccion de la asintota ya encontrada, x = .
La otra expresion que verifica a la ecuacion (a):

2y'1— xJ = 0

O Sea.

W T
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corresponde a una direccion cuyo coeficiente angular es:

1
\VA I

Si cortamos la curva dada con la recta:

y= vT + d

tendremos la siguiente ecuacion que contiene las x de inter-
seccion:

< ) f-d (2x — 1) — x1-)-x" = o0

en la cual el coeficiente de la mayor potencia de X, igualado
a cero como lo indica la regla, es:

6 d 1
1l A n O 1
entonces,
d= » * >
12 61y2

luego, la asintota buscada es:

X :

/ V=2 N 6MN/2

Si nos fijamos en las condiciones de simetria que hemos
dado, constataremos que esta curva no posee ninguna de ellas*

Calculemos las derivadas parciales para determinar los
puntos singulares que tenga, igualandolas a cero.
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(1) f(x, y) = 2xy!l—y'l— x1-]-x'2= o0
(2) PX (X, y) = 2y — 4x" -f- 2x = 0
(3) Py (X, y) = y2(6x — 3) = o.

Las dos soluciones de la ecuacion (3) son:

|
y —of x ~ 2y

de las cuales solo la primera verifica a todas tres ecuaciones
con ei sistema de solucion comun:

0, X = 0.

luego, el origen es el unico punto singular de la curva repre-
sentativa de la ecuacion (1).

Como sabemos, las tangentes en este punto singular es-
tan representadas por el grupo homogéneo de menor grado,
igualado a cero, o0 sea;

XD: 0

haz de dos rectas confundidas con oy. en el origen van a
parar dos ramas de la curva, admitiendo una tangente comun
y formando lo que se llama punto de retroceso de primera es-
pecie, en el cual la disposicion de la curva es como indica la

figura 8.
No la hemos concluido por no alargarnos demasiado vy

hacemos constar solamente que podriamos construirla, hacien-
do explicita la funcion y que nos da:

XJ(X- - V)
o - i

y tomando en cuenta las determinaciones que dejamos hechas.
En general, para la representacion grafica de las expre-

siones:

= 1 (x), 0! f(x,y) = o,

aplicaremos en lo posible toda la teoria que venimos dando.
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Si la ecuacion entera f(x, y) = o0 es de 2o grado, o bi-
cuadrada, con respecto a una de las coordenadas, por ejemplo
ytresolviendola se la puede discutir facilmente, y para cons-
truir su curva, Investigar lo siguiente:

lo. Los valores particulares de x para los cuales la
ecuacion, cuya incognita considerada es y, admita raices mul-
tiples.

20. Los valores particulares de x para los cuales admi-
ta raices infinitas. Segun vimos en las asintotas, estos valores
son los que anulan el coeficiente de la mayor potencia dey en
la ecuacidon de la curva.

30. Los valores de x para los cuales la derivada y toma
un valor infinito o nulo, y aquellos quo correspondan ay = o,
En una ecuacion f (X, y) = o0, si hacemos y — o0, el conjun-
to de términos que no tengany sera igual a cero.

Los valores asi encontrados de x, ordenados de — =2 a

Df daran ciertos intervalos dentro de los cuales buscare-
mos las diferentes determinaciones reales de y, como tambien
las que corresponden a la extremidad de cada intervalo.

Ejemplo: Dados dos puntos fijos Fy F' cuya distancia
es igual a 2, construir la curva, lugar geometrico de los puntos

M para los cuales se tenga:
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Busquemos la ecuacion del lugar en coordenadas rectan-
gulares cuyo eje x'x es la recta FF y el origen, el punto medio
del segmento FF'. (Figura 9).

Llamando (X, y) a las coordenadas de un punto cualquie-
ra M que pertenezca al lugar, la expresion anterior se con-
vierte en:

I7y2 + (x - t)- X YY2+ (x +i)- = 1

Ficf. D

O SeEa.

[ya+ (x- 1 [yj+ (x + 0] = 1>
y ordenando con relacion a vy :
(0 y'“F 2y~ (x" -\- 1) X'l— 2x" = o.

Notamos que esta ecuacion contiene solamente potencias
pares de x y de y; luego, su curva es simeétrica con respecto
a cada uno de los ejes coordenados y al origen. Resolviéen-

dola con relacion a y tendremos:
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y= x*xy —xJ— 1 = [/X-+ 02+ X2(2— X-)
:iy—X-—i+y4 -yll

Sigamos el procedimiento anterior.

lo. Las raices multiples de esta ecuacidn serian si se
pudieran realizar las ecuaciones:

4 x2+1 =0, —x"“—1—]J|/4x-+ 1= o,
lo cual nunca puede efectuarse; o si:
— x" —1+4+ | 4x2-F+ 1= o,

que equivale a la condicion:

4 x2+ 1= (x2+ \)\
0 sea:
X1— 2x2= x2(x2— 2) — ot

cuyas raices son. x = o0, X = + |/2.
20. Como el coeficiente de y 1en la ecuacion (1) es la

unidad, no existen raices infinitas en V.
30. Calculemos yf derivando de la ecuacion (1) :

f'x (X, y) 4 x (y2+ x2— 1)
/ fy (x,V) 4y (y2+ x2+ 1)

X (x2+ y2— 1)
y (x2+ y2+ O

Con el valor x = o0 que anula al numerador de y, la
ecuacion (1) no admite otra solucion que y = o, la cual es
la dnica que anula también al denominador; vemos que el
origen es un punto singular de la curva, y se hace - para
y = 0, gque en la ecuacion (1) corresponde a las soluciones

X = *x [/2.

Se anula y' junto con la expresion x2+ V — 1*c0~
mo factor; luego, en los puntos de interseccidon de la cuiva

(O con la circunferencia.
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(2) X- + y2— 1 = o,

de radio oF = |, la tangente es paralela a ox. Resolvien-

do las ecuaciones (1) y (2) determinaremos dichos puntos;
esta resolucion nos da:

Los valores de x que corresponden a y = o0, los hemos
determinado ya.

Tomando en cuenta la simetria de la curva, es suficien-
te considerar solo los valores positivos que hemos encontra-

do de x: estos son:
p

0, /o ia@iniz

y vamos a buscar las determinaciones de y cuando x varia
dentro de cada intervalo.

Si en la ecuaciéon (1) hacemos:
y" = z, y4= 2Z2 tendremos una ecuacion de 2ogrado en z,
Yy con cuyas raices reales zj y.Z2 habra las siguientes igual-
dades:

Zi -f- 22 2 (x- -f- 1) «< 0,

z, 22= X' (X2— 2).

El producto z, z2sera negativo si x < ]/2, entonces en
la suma zj -f- z.,, una de las raices sera positiva y la otra,
de mayor valor absoluto, negativa; luego, en el intervalo de
la variacion de x (o, |/2) solamente la raiz positiva de Z

determinara valores reales de y:

y = * yr.

El producto z, z, serd positivo si x>y 2, entonces 2y z2
son de valor negativo y no determinan ningun valor real

de v.
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Luego, la curva se encuentra encerrada entre las dos pa-
ralelas a oy, x = =x |/T, y entre las dos paralelas a o X,

y:i 20

Nos falta solo que determinar las tangentes en el punto
singular encontrado, las que estan representadas por el gru-
po homogéneo de menor grado de la ecuacion (1), igualado
a Cero:

2y — 2 x'= 0, 0sea: y = + X

primera y segunda bisectriz.
El origen, centro de simetria, es pues un punto doble, a
tangentes distintas, y un punto de inflexion comun para am-

bas ramas.

La superficie engendrada por la revolucion de esta curva
alrededor del eje x' x, sera en el espacio, el lugar de los pun-
tos M para los cuales se tenga:

MF X MF'= 1.
En la ecuacion (i) encontramos que el grupo homoge-
neo de términos de mayor grado igualado a cero,

| | ~ o o » 1 o
X44* 2x'y r y — 1

haz de las direcciones asintoticas de la curva, representa cua-

tro rectas iImaginarias.

Procedimiento para construir una curva cuya ecuacion
de grado m, f (X, y) = o,

es de dificil resolucion con respecto a cualguiera de las coorde-
nadas.

Primer método. Ante todo se buscara las direcciones

asintoticas de la curva. Si cortamos a esta por medio de una
recta variable y paralela a una direccidon asintdtica encontrada,
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se podra determinar todos los puntos que se quiera de la cur-
va, por sus intersecciones con dicha recta.
Sea la recta secante:

Y= cXx + d, (1)

en la que c es el coeficiente angular de una asintota a la cur-

va, y d un parametro arbitrario. Las x de interseccion estan
dadas por la ecuacion:

f(x, cx-f d = o, (2)

cuyo grado es siempre inferior al de la curva, puesto que para
determinar las asintotas hemos hecho, en su ecuacion, que el
grupo de téerminos de mayor grado m sea igual a cero, 0 sea:

fm(x, y) r= o,

y C esta dado por

fiu (L ¢) - Ot
mientras que el grupo de grado m de Ja ecuacidon (2) seria:
fm (X, ¢ x) = x“Lfin (1, ¢c),

y entonces el coeficiente de xm se nulita; con lo que el grado
de la ecuacion (2) es inferior a m. La discutiremos, si su gra-
do se presta para ello, siguiendo el procedimiento que nos sirvio
para la construccion de la curva anterior, o0 sea:. buscar los
valores particulares de d para los cuales la ecuacion (2), cu-
ya incognita es x, admite raices multiples, infinitas o nulas.

Con estos valores de d formaremos Iintervalos de la va-
riacion de este parametro, de — ® a -jJ- K, intervalos a los
que corresponderan diversos arcos de la curva limitados por
una o dos paralelas a la direccion asintotica, pues, las raices
multiples de la ecuacion (2) corresponden, bien a los puntos
multiples de la curva, que admiten dos o mas tangentes distin-
tas o confundidas, o bien a los puntos en los cuales la secante
(J) se hace tangente a la curva. Las raices alcanzan un va-
lor infinito cuando la secante es una asintota, y se nulitan
cuando la curva atraviesa al eje oy; las primeras correspon-
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den al valor de d con el cual se nulita el coeficiente de Ila
mayor potencia de X en la ecuacidon (2), y las segundas, al

valor de d que nulita el termino independiente de x en la mis-
ma ecuacion.

Sequndo metodo. Si el grado de la ecuacion (2) en el
primer método no facilita su discusidon, emplearemos este se-
gundo metodo, analogo al anterior, pues, consiste en buscar
las Intersecciones de la curva con una recta variable que gira
en el plano alrededor de un punto singular multiple.

Por consiguiente, si el primer método no ha sido aplicable,
se procedera a la determinacion de los puntos singulares de
la curva, y se escogera, para el efecto, aquel en el cual la
curva admita mayor numero k de tangentes distintas o con-
fundidas. Enseguida, se trasladara el origen de coordenadas
al punto escogido.

Sea la ecuacion de la curva, relacionada al origen es-
cogido,

f(x,y)= o,

la secante variable tendra por ecuacion:

y — YX, (*)

en la que y es el parametro arbitrario que nos sirve para
determinar los puntos que se quiera de la curva, dados por
sus Intersecciones con dicha secante.

Las x de interseccion estan dadas por la ecuacion:
f(x, YX) = °»
0 Sea por:

Xk (x, y) — 0 (2)

El grado de (X, r) enx seram — k si m es el grado
de la curva y k el orden de multiplicidad del punto singu ai
escogido (m > Kk); pues, una recta cualquiera corta a una cur-
va de grado m a lo mas en m puntos, reales o imaginarios,
distintos o confundidos; y como la ecuacion (2) tiene ya, en e
primer factor x\ Kk raices de x que se nulitan, resulta que para
el siguiente factor @ (X, y) quedaran a lo mas m K raices,
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reales o imaginarias, distintas o multiples; luego, el grado de
y (X, y) sera m — k. Esta es la razon por la cual se aconse-

Ja escoger el punto en que k sea mayor, con lo cual se facilita
la discusion de la ecuacidon (2), limitandose a hacerlo solo con

7 (x>Y) = o, (3)

y siguiendo el mismo procedimiento del primer metodo, o sea,
buscar los valores particulares de y para los cuales la ecuacidn
(3), cuya incognita es X, admite raices multiples, infinitas o
nulas.

De esta manera lograremos separar los diversos arcos de
la curva dentro de angulos conocidos que tienen su Vveértice en

el origen.

Lo dicho vamos a aclarar con el siguiente ejemplo:
Construir la curva: (Fig. 10)

X1l—x2% -]-y .= o. (a)

Como vemos que el primer metodo no es aplicable, bus-

quemos los puntos singulares que tenga la curva, conforme ya
se sabe hacerlo, Igualando a cero cada una de las derivadas

parciales de la ecuacion (a).
X (4x2— 2y) = o0, (b)
Jy'2— Xx- = 0 (c)
El Unico sistema de solucion comun a las tres ecuaciones
(a), (b) y (c) es: x = o0,y = o0, luego el origen es punto sin-

gular de la curva, en el cual admite las tangentes dadas por el
grupo homogéneo de menor grado igualado a cero, o sea:

ot O

| ) / : .
y' —yx_= y(y —xJ =0
haz gque se descompone en las tres siguientes rectas:
y = 0, y = X (la. bisectriz),

y = — X (2a. bisectriz).
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La curva presenta en el origen un punto triple a tan-
gentes distintas. Al corlarla por medio de la recta variable:

yX,

tenemos la siguiente ecuacion en X:
X1— Txl+ Y'V = X3(x — v + = 0, d;

que confirma lo dicho en la teoria respecto a m — K.
Discutamos la ecuacion (di.

lgualando a cero su primer factor, es una solucion que
corresponde al origen. Las demas soluciones estan dadas por:

PMXxX>r) = x —y + r = o,

0 sea:
x =y (1 —1f), (e)

ecuacion que, por ser de primer grado, no admite raices mul-
tiples; a cada valor de y corresponde un solo valor para X
y uno solo para y. Las raices nulas corresponden a valores
de y iguales a los coeficientes. angulares de las tangentes en
el origen. En las raices infinitas observamos que si Y tiende
hacia el infinito por valores negativos, el punto de Intersec-
cidon correspondiente sera X = a, y = ~.y si lo hace
por valores positivos, tendremos X = 3, Yy = X.
Tomando en cuenta esto, y que las direcciones asintoticas de
la curva son paralelas a oy, se deduce que ésta presenta dos
ramas parabdlicas en dicha direccion, siendo ademas las uni-

cas ramas Iinfinitas de la curva (ramas A'O y AQ), puesto
que a cada valor finito que. demos para y, corresponde un

solo valor finito para x y uno solo para Y.
Busquemos en la ecuacion (e) el maximo o minimo de X.

X* — I — 3y' = 0,
Y y

I = 0.
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El maximo se tiene para

Y — L3
3
entonces
2] 3 2
X = -y-> Y=Y =YY"
El minimo se tiene para
¢ - e {3
3
entonces
21/ T 2
X = 'y -1 y=TxXx=Yy

Como la ecuacion de la curva contiene solo potencias
pares de X, es simetrica con relacion al eje oy, y para cons-
truirla estudiaremos solamente los valores positivos de X, que
corresponden a la variacion de y dentro de los intervalos
(o, 1) y (— ~, J), los cuales hemos deducido de la ecua-
cion 1le).

Para mayor precision en la construccion de la curva,
calculemos también el maximo o minimo de V.

y = yX = y- — y\
VY = 2y (X — 2-1),
"= 2-12 y2
. ! A
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entonces

* :_L: 'f*~2
X Y + 4

El minimo se tiene paray = 0, entoncesy = 0, X = 0.

Todas estas determinaciones nos sirven tambien para de-
ducir el sentido de la concavidad de la curva, y facilitar mas su
construccion; asi, en los puntos correspondientes al maximo o
minimo de X, la tangente es paralela al eje oy, y la curva tie-

ne respectivamente su concavidad hacia ox 0 hacia ox; y en
los puntos que corresponden al maximo o0 minimo de Yy, a
tangente es paralela al eje ox, y la concavidad es respectiva-

niente hacia oy' o hacia oy.
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I1l. Curva definida por las ecuaciones
x = f (1), y = f2(1).

En estas ecuaciones, t es el parametro variable que en
Cinematica corresponde al tiempo. Eliminandolo, podriamos
obtener ecuaciones de la forma: y = f(x1 o f(x, y) =0, pe-
ro esta eliminacion no es necesaria, puesto que la construc-
cion de la curva x = f (t), y = f2(t), es en si muy facil.

Cada una de estas funciones de un mismo parametro t las
estudiaremos como lo hicimos con la funcion y = f(x); pero
debe tenerse en cuenta que para que haya un arco de curva
que a la vez represente la variacion de estas dos funciones, se
requiere que dentro del intervalo correspondiente (tlt t) de la
variacion de t, sean x y y a la vez funciones definidas y con-
tinuas de ft.

A cada uno de los intervalos en los que esto se verifigue,
correspondera un arco de curva.

Tangente. Sean dos puntos vecinos: M (xn, yO0). vy
M' (x0 -f- Ax,, y(0 -f- Ay:l) que estan sobre una curva de
ecuacion:

£2 ().

x = 1 (1), y

Los valores xuy vy, corresponden al valor tl de t, y los
valores (xu+Ax0) vy 1y,, -]- Ayni corresponden al valor (t,,-f"At0)
El coeficiente angular de la secante MM' es:

AYu AYq . Axo.

"H 9| Axg 10 10

y si hacemos que M' se desplace hacia M, siguiendo la cur-
va como trayectoria, en el limite, cuando M' se aproxima In-
definidamente de M, la secante MIVL es la tangente en M,
cuyo coeficiente angular es el valor limite de ¢, o sea:

dy,, dx,,
Itm*c — diTIrW '
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Al construir la curva, discutiremos el valor de este coe-
ficiente angular m y determinaremos el maximo o minimo de
X y de y, buscando los valores de t para los cuales se anule
solo el numerador o solo el denominador de la expresion de m.

Para mayor concision, en el ejemplo siguiente de cons-
truccion de esta clase de curvas, aplicaremos lo sentado an-

tes en coordenadas rectangulares, indicando al mismo tiempo
el procedimiento que debe seguirse.

Construir la curva ifig. 111

X=1vYy, y= tLt. (J. Bocquet)
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VVVVVVV

fr—-----N M
t X' X y'
I 7
1
1 0 O
+ crece + crece |
1
e 0
e
decrece + crece
y 2
e l. el/2 /2
decrece i crece
+ « 0 +

Calculemos la derivada de cada funcion:

Xx>= * ~ L * y'=1+LTt1.

Las funciones X,y Yy sus derivados son definidas y con-
tinuas solamente para valores positivos de t.
Para t = es, se tiene:

y = &,limx =y = o,

luego, el eje oy es asintota de la curva. Las demas asin

totas encontraremos buscando el limite de cuando x tien
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de al infinito, o sea, si nos fijamos en el valor de x, cuan-
do t tiende hacia cero: entonces, X = x

im— = t" = o,
X

lo que significa que hay tambien una direccion asintotica pa-
ralela a ox, y que las ramas de la curva no pueden encon-
trarse 0 no existen sino en el primer cuadrante y en el ter-

cero, puesto que la relacién7 es siempre positiva.

Para determinar esta asintota busquemos el limite de vy
cuando t tiende hacia cero:

, Lt .

lim vy 1 | luego,
L

_ 1

lim y t $ thz — t= o;

por consiguiente, el eje o x es la otra asintota de la curva,
quedando esta en el tercer cuadrante.
La otra rama de la curva se halla en el primer cua-

drante.
Para t = 1 se tiene;:

X =y =Lt= o.

Para t > 1, XxyJ) son positivas;
para t< 1, x y Yy son negativas.

Vamos a probar que la curva es simétrica con relacion
a la bisectriz del angulo x'" oy, o sea que, a todo punto
M (X, y) de la curva corresponde su simétrico M ( y>

En efecto, un punto cualguiera M tiene por coordenadas:
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siendo t un numero positivo cualquiera. A todo valor de t

. I .
corresponde su inverso - con el cual se tiene:

1
L
X, = =----- = —tLt
t
| Lt
y. = —Ll—1= — 1 = - X

donde vemos que las coordenadas X, ,Yy, son las del punto
simetrico de M con respecto a dicha bisectriz. Tomando en
cuenta esto, estudiaremos la curva solamente con los valores
de t mayores que la unidad.

Vimos ya que los puntos de inflexion de una curva co-
rrespondian a aquéllos en los cuales el coeficiente angular de
la tangente pasaba por un maximo o un minimo; luego, en
el caso actual busquemos los valores de t en los que el coe-
ficiente angular m sea _un _maximo 0 un minimo:

/ t" (I + Lt)
X' 1— Lt

su derivada con relacién a t es:

2t(2 — L-1t)
m” (1 —Lt)2 '
la cual se anula cambiando de signo si L-t = 2, o sea i
£ 1~2
Lt = + V 2, t — e

Para t = e121m pasa por un maximo, y el punto de

inflexion correspondiente M tiene por coordenadas:
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V 2 /2
X ﬁ:.* y = er'v 2.
e

El otro punto de inflexion M, corresponde a

y es simetrico del anterior con respecto a la 2a. bisectriz. Sus
coordenadas son:

ell’
Para Lt = I, o sea para t = e, m toma un valor infi-

nito, y el punto correspondiente es M., 1 *

En este punto, la curva presenta su concavidad hacia ox',
porque entonces el valor de x pasa por un maximo.

Para t = - se tiene m = 0; entonces el valor dey pasa

por un minimo cuyo punto es | — e, — , simetrico

de M,.
En el punto M.,, la curva presenta su concavidad hacia oy.

Para construir la curva, tomamos en cuenta su simetria
y formamos el cuadro que la acompana con los siguientes

valores encontrados de t, a partir de i:

i, e e*~ -f- »

Al estudiar el sentido de la concavidad de una curva
y = f(x), dedujimos que la tenia hacia oy o hacia oy' si yX’
era de signo positivo o0 negativo respectivamente, es decir, si
YX* era funcidon creciente o decreciente.
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Para determinar en el caso actual la concavidad de la

rama del primer cuadrante, examinemos comparativamente los
signos de mf y de x":

m* es positivo si t< e *

m* es negativo sit> e f
X* es positivo si t< e,

X* es negativo si t"> e.

Dentro de los siguientes intervalos de t:
(I, e)y el 2’ ©

m* y x' tienen el mismo signo; luego, m y x varian en el mis-
mo sentido, con lo cual y*s es una funcion creciente y la con-
cavidad que presenta la curva es hacia oy.

Dentro del intervalo de t ( e, Zz 2] sucede lo contrario.

Haciendo e = 2, 71828, el calculo logaritmico nos ha
dado:

el 2 = 41132, = 0.367389,

thVT - 5,81638, Ve — 0,34383.

€

IV. Construccion de curvas en coordenadas polares

Con el mismo razonamiento que empleamos al principiar
este estudio, veremos que si en la ecuacion:

f (< (1)

el radio vector r es funcion definida y continua del angulo
polar g cuando este varia dentro de cierto intervalo, existe en
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el plano un arco de curva representativa de la variacion de la
funcion en dicho intervalo.
El conjunto de todos estos arcos formara la curva de la

ecuacion (1), y los puntos de esta curva seran los unicos del
plano cuyas coordenadas polares verifiguen dicha ecuacion.

Por no alargarnos, al ejemplo siguiente acompanamos,
en lo posible, la teoria y el procedimiento que debe seguirse en
la construccion de esta clase de curvas.

Construir la curva (fig. 12):
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r = tangente to — 1 = f (to).

lo. En esta ecuacion vemos que si a cualquier valor to,
comprendido en el intervalo (o, 2”), se lo anade un multiplo
cualquiera de 2%, o sea 2k—~, entonces el valor correspondiente
de r no cambia; luego, para determinar todos los puntos de
esta curva sera suficiente hacer variar a to en el intervalo
0, 2t).

Ademas, al valor o, de to corresponde el punto M, cuyo
radio vector es: in = tang. o3 — 1, y al valor (tol -J- t0) de to
corresponde otro punto M', cuyo radio vector es igual al an-
terior; luego, M, vy son simétricos con relacion al polo, vy
en consecuencia, toda la curva.

Tomando en cuenta esta simetria, se construye primero
la parte de curva correspondiente al intervalo (o, tz) de la va-

riacion de to, y se concluye despues la otra parte.
20. En el intervalo (o, ~) de la variacion de to, lafun-

cion r esdefinida y continua, menos par to = —, valor con el

cual r toma un valor infinito, primero positivo y después ne-
gativo. La direccidon asintotica correspondiente es, pues, per-

pendicular al eje polar ox.
Para determinar esta asintota busquemos la ecuacidn de

la curva en el sistema rectangular xoy... Se tiene:

eos ®(tang. to— 1) = i, (to),

X = r eos (0
Yy = r sen to = sen to(tang. to— 1) = f2(to).
En este sistema, la asintota es paralela a oy, y se pre-

senta un caso ya estudiado, el de la curva anterior; por consi-
guiente, la abscisa de esta asintota sera el limite de x cuando

to tiende hacia —:

lim x = lim eos to (tang to— 1) = Ilim *an~——

eos 1o
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luego,
1

, eos- © 1

lim X 1
sen @ sen
C0S'¢ @

. . 1
30. En el mismo intervalo (o, r se anula para (¢

luego, la curva pasa por el polo: en este caso, la tangente
en o tiene por angulo polar el mismo angulo con el cual se

anuia el radio vector, o sea ® "
En efecto, si consideramos un radio vector variable que
sea secante a una rama de curva que pase por el polo, esta
secante se hara tangente en o cuando los puntos de intersec-
cion se confundan en o, lo cual corresponde al angulo polar
dicho.
40. Hemos encontrado los siguientes valores particulares

de oo, en el intervalo (o, 7):

Cuando m varia en el intervalo (o, mj, r toma valores

negativos (rama AO de la figura 12).
Cuando m varia en el intervalo »~ A r t°ma valo-

res positivos. (Rama OB).

H

Cuando mvarfa dentro del intervalo . z), r toma va-

lores negativos. (Rama CD).
Las otras ramas de la curva son las simetricas de las

anteriores con respecto al polo.
En o, la curva tiene un punto doble de tangentes con-

fundidas, primera bisectriz de los ejes.
Nos hemos servido de una tabla con los valores de las

tangentes de los angulos.



