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PROCEDIMIENTO PARA CONSTRUIR LA CURVA 

DEFINIDA POR UNA ECUACION, Y 

ESTUDIO ANALITICO

I.— Curva defin ida por una ecuación cualquiera de

la  forma y  =  f (x)

Sabem os, por el anális is matemático, que la función 
y  =  f (x )  es continua para todos los valores de x  con los 
cuales su primera derivada P (x ) tenga un valor determinado 
y  finito. A dem ás sabemos que el coeficiente angular de la 
tangente en un punto M  (x 0, y 0), de la curva representativa, 
es el va lor que toma P (x )  para x  =  x 0, y  que sí se tiene:

P (xn) =  o, la  tangente es paralela al eje ox,

P (x 0) =  ± oo, la tangente es paralela al eje oy,

P (x 0) o, la  función y  es creciente en la proximidad del
punto M,

P (x 0) <C o, la función y  es decreciente en la proximidad de M.

Dentro de un intervalo (a, b) de la variación de x, en 
que y  sea continua, la raíz a , ,  de la ecuación derivada f (x) 
igualada a cero, corresponderá a un máximo de y  sí para
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dicho valor a, dado a x , f  (x )  se anula pasando de un valor 
positivo, para valores de x  inferiores a la raíz, a un valor 
negativo, para valores de x  superiores a dicha raíz. Lo que 
quiere decir que, la función y  será primero creciente y  des­
pués decreciente.

La raíz a., de f  (x )  corresponderá a un mínimo de y ,  si 
para dicho valor a., dado a x , f  (x )  se anula  pasando de un 
valor negativo a otro positivo.

Tom ando en consideración lo que antecede, se ve c lara­
mente que el procedimiento para construir una curva: y  =  f (x ) ,  
en coordenadas rectangulares, debe ser el siguiente:

Io. Desechar los valores de x  para los cuales la función
deja de ser definida; por ejemplo, la función y  =  ]/ x  no es 
definida para valores negativos de x , porque entonces y  ad­
quiere valores imaginarios. Por la m ism a razón, la función
y  =  ]/ (x— 1) (x  — 4) tampoco es definida para valores de 
x  comprendidos entre 1 y  4; luego esta curva no tendrá nin­
gún punto en la parte del plano comprendida entre las para­
lelas a oy:

x  =  1, x  =  4.

2o. Buscar  los va lores de x  con los cuales la función
y  deja de ser continua.

3o. Calcu lada la función derivada, se buscará igualmen­
te como hemos hecho con la anterior, los va lores de x  con 
los cuales deja de ser definida o continua. T om em os otro 
ejemplo; sea la  función:

-i / í + x
r  =  * V r ^ '

calculando la derivada, tendremos:

v> __ -j /* + x j x y i -  x_______- x- + x + í

y i -  x (i -  x)- yTTx y(j-j-x) (t -x ) ;l

Las funciones y y y serán definidas sí el subradícal de 
cada una es positivo, lo cual se tiene sólo para valores de x  
comprendidos entre — \ y  -\- 1. P a ra  x  =  ± I se tiene:
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y' =  ± Oo, y  entonces y  y  y  dejan de ser continuas. Cuan­
do y f es discontinua, toma generalmente un valor infinito.

4o. Buscar  los valores de x  para los cuales se tenga: 
y =  o, y  =  °o o y  =  — oq. En el ejemplo anterior se tie­
ne: y  =  o, para x  =  o y  para x  =  — 1, y  =  oq, para x  =  í ,  
que es una asíntota.

5o. Buscar  las raíces de la derivada, con las que se 
anula, bien sea cambiando o sin cambiar de signo.

6o. Ordenando de una manera creciente, los valores así 
obtenidos de la variable independíente x, se obtendrán inter­
valos consecutivos, dentro de los cuales, o la función no es 
definida, o es continua y  creciente, o bien, continua y  decre­
ciente, para saber lo cual tendremos que averiguar el signo 
que tenga la primera derivada dentro de cada intervalo.

7o. Calcu lar  los valores correspondientes de la función y  
para los valores particulares que así hemos obtenido de la 
variable x .

A  este procedimiento tendremos que añadir el estudio so­
bre la concavidad que presenta la curva hacía uno de los 
ejes de coordenadas, la determinación de sus puntos de in­
flexión y  la de sus asíntotas. Averiguaremos también la si­
metría que tenga la curva, lo cual abrevia su construcción.

Por lo pronto, ilustremos lo dicho con un ejemplo.
Construir:

+ i/(x-í)  (x -2 )

Esta curva es simétrica con relación al eje x  x, pues, a 
todo punto M  (x , y )  corresponde otro M ' (x, y), a igual
distancia de dicho eje. Bastará  construir la rama de curva:

x
]/(x- í) ( x - 2)

Calculemos la derivada:

*  y ï x - 1) ( x - 2) x (2x -  3) 4 -  3x
y ( x - í )  ( x -2 )  2]/(x- í):1 ( x - 2 ) :‘ 2 ]/(x- í ) ' (x  2) !
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Las funciones y  y  y  son definidas y  continuas sí se tie­
ne: x  <  1 o x  >  2 , es decir para valores de x  exteriores al 
intervalo (1, 2). P a ra  x  =  1 se tiene: y  =  y '  =  oq; para
x  =  2 , y  — — y '  =  oq.

Las dos parale las a oy: x  =  1 (recta c'c), y  x =  2 (rec­
ta D'D), son asíntotas de la curva. (F íg .  1).

P a ra  x  =  o, la función se anula  pasando de un valor 
negativo a otro positivo, porque entonces la derivada tiene 
signo positivo.

4
El valor x  =  que anula  el numerador de y ' ,  está

dentro del intervalo ( 1, 2 ) en el que la  función y  su derivada 
no son definidas. Y '  se anula para  x  =  db °o, pues, enton­
ces se tiene:

y
t   4 — 3x  x 3

2 ]/(x -  í ) :i (x -  2):i 2 (x  —  1) (x  — 2 ) /x -  I. x -  2
X  X

+ 3 =  o
°o

y  el va lor que corresponde a la función es: y  =  ± J, orde­
nadas de las asíntotas para le las  a x ' x  (rectas A 'A  y  B 'B  res­
pectivamente).

En el siguiente cuadro hacemos constar también el signo 
de la derivada de y\  o sea y ” , porque según dicho signo sa ­
bremos las variac iones de y\  pues, en los intervalos de con­
tinuidad, sí y "  >  o, y* es función creciente; sí y ”  <C o, y '  es 
función decreciente. Adem ás, como veremos m ás adelante, 
por el signo de y ” se deduce el sentido de la  concavidad de 
la curva.

En la función que estudiamos:

6]/(x -  Í ) :1 (x  -  2 ) *tt ___  w v >/ Va
7  ~  4 ( x — i y  (x  — 2 ) ; j - r

, (3x  — 4) [3 (x  — i y  ( x  —  2 )3 +  3 (x  —  2 ) 3 (x  — l )'1]
4 (x  —  J ) 3 ( x  — 2 )3 ]/(x- í )3 ( x - 2)'1
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y símplícando:

y
ít

12
12 x J — 33x  2 4 __ __
4]/ ( x -  ty> ( x - 2)* 4 /

( x 33  ̂2 _i_ 63
24 ; “576

(x -  í) :' (x -  2)5

X y ” y ' y

---  Oo 0 1

+ crece -f- crece —

o 0

+

crece -j- crece -f-

1 +  °o +  °o

•

La curva no tiene ningún 

punto en este intervalo

2 —  Oo — Oq

+ crece — decrece -f~

+  °o o
*

Vemos que y ”  es también definida y  continua, fuera del
intervalo ( 1, 2 ), y  su signo es siempre positivo fuera de di­
cho intervalo.

Los valores particulares de x  que hemos obtenido, or­
denados de — °o a ° o ,  son:

—  ° o ,  o, 1, 2 , -f- oq, los mismos que figuran con las
variaciones correspondientes de y  y  y  en el cuadro, el cual 
facilita la construcción de la curva.

Como queda dicho, la curva:

x
y ]/ (x - l )  ( x - 2)

simétrica de la anterior con relación al eje x  x , está repre­
sentada con línea de puntos.



3.32 ANALES  DE LA

E scala  c/e 
C ooro fc  rta c ía s

I

Sentido de la concavidad de una curva y determinación

de sus puntos de inflexión

Sea una curva: y  =  f (x), (figura 2), en la cual conside­
ramos un punto M (x0, y 0) cuya abscisa esté dentro de un 
intervalo en el cual la función y sus derivadas sean definidas 
y continuas; luego, f  (x) y f" (x) tendrán un valor determi­
nado y  finito: y'0, y ”Q, para x  =  x n.
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La tangente ( T )  en el punto M  tiene por ecuación:
Y  — y 0 =  y ' 0 (X  — x 0), considerando X  y  Y  como coorde­
nadas corrientes de esta recta.

T racem os  una paralela variable al eje oy, que pase por 
la proximidad de M  y  que cortará a la curva en un punto
M ',  a la tangente ( T )  en un punto N y  al eje ox en P.
El punto M '  se encontrará encima de la tangente (T ) ,  como
índica la figura, sí se tiene:

P M '  — P N  =  N M ' > o  ;
p

y  sí esto sucede en la  proximidad de M, se dice que el sentido 
de la concavidad de la curva, en M , es hacía la y  positiva. 

M '  estará debajo de (T )  sí se tiene como en la figura 3:

P M '  — PN =  N M ' <  o ;

y  sí esto sucede en la proximidad de M, la concavidad será 
hacia la y  negativa.

Pero, este segmento orientado N M ' es igual a la dife­
rencia entre la ordenada y  del punto M ' de la curva y la 
ordenada Y  del punto N de la tangente (T ) ,  correspondien­
do ambas ordenadas a una misma abscisa. Estas dos orde­
nadas son:
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de donde:
/ " \

( 1) Ñ M '  =  y  -  Y  =  y  -  y ' 0 X  +  y'„ x 0 -  y„ =  9  ( x ) .

Claro está que la función z (x )  se anula  para x  =  x„ , o sea 
cuando P N  pase por el punto M  (x„, y ()).

Consideremos primero el caso de la figura 2 , en el cual 
la función z (x ) ,  para valores de la var iab le  inferiores a x C), 
tiene signo positivo y  es una función decreciente (el valor del
segmento N M ',  al acercarse a M, va  disminuyendo); para v a ­
lores superiores a  x 0 también tiene signo positivo, pero en­
tonces es una función creciente (el va lor de dicha función,
segmento N M r, va  aumentando cuando x  aumenta).

Según  la teoría de la variac ión de las funciones,
N M ' =  z (x )  se presenta en el caso de un mínimo para 
x  =  x (). Las condiciones necesarias y  suficientes para este 
mínimo serán que la primera derivada cp* ( x ()) =  o, y  que en 
las derivadas siguientes, la primera que no se anule para 
x  =  x,„ sea tomando un valor positivo y  de un orden par 
de derivación.

Derivando la ecuación ( 1) tendremos:

(2 ) t f  ’(x )  =  y '  — y ' 0 =  f' (x )  —  £' (x„),
é

derivada que se anula para x  =  x 0, cumpliéndose así la prí 
mera condición común para un m áx im o o un mínimo.
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Derivemos la ecuación (2 ) :

(3) Y  (x )  =  y ”  =  f”  (x).

S í  esta segunda derivada toma un valor positivo para 
x  =  x 0, quedan cumplidas las condiciones necesarias y  sufi­
cientes para el mínimo de la función N M ' =  z (x), y  enton­
ces ía curva y  =  f (x )  tiene, en la proximidad del punto M, su 
concavidad hac ía  la y  positiva.

T am b ién  sucederá lo mismo sí z”  (xn) =  P  (x ,)  =  o,
j  Y 4 '  * > (1/ •

siempre que en la derivada tercera se tenga:

Cfw  (x 0) =  fm (x 0) =  o, y  en la cuarta:

cplv ( x 0) =  f'v ( x (l) >  o, a fin de cumplir las condiciones
del mínimo, cuyo razonamiento se prolonga como queda in­
dicado (Nótese que a partir de la segunda derivada, las de z (x) 
son idénticas a las de f (x )  ).

De una m anera  aná loga  estudiemos el caso de la figura 3, 
en el que, m ás concisamente, diremos siempre en la proxi­
midad de M :

N M '  =  cp (x ) ,  es una función continua de valores ne­
gativos y  c r e c i e n t e  cuando x  x„ ;

N 1VP =  z (x ) ,  es una función continua de valores ne­
gativos y  d e c r e c i e n t e  cuando x  x 0.

Luego se presenta el caso de un máximo de z (x), para 
x  — x 0, y  siempre que se llenen las condiciones necesarias 
y  suficientes para dicho máximo la curva tendrá, en la proxi­
midad de M , su concavidad hacia la y  negativa.

De dichas condiciones, en ía ecuación (2) hemos visto 
que se cumple la primera: P  (xu) =  o, y  sólo nos restará sa­
ber sí la primera de las derivadas siguientes que no se anula, 
para x  =  x„ , es de un orden par de derivación y  menor que 
cero.

S í  esto se cumple en la derivada segunda, con ía de­
sigualdad:

r  M  =  w  <  o

quedan llenas dichas condiciones.
Sucederá lo mismo sí:

P  (X()) =  P '  (x0) =  o , f,v (xo) <  o.
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En la curva que construimos (figura 1)

x
Y (x  — í )  ( x - ^ t

vimos que y ” era siempre positiva para todo valor de x  ex ­
terior al intervalo ( 1, 2 ) ;  luego dicha curva es convexa y  
presenta su concavidad hac ía  la y  positiva.

En la simétrica de la anterior:

  x
^  ]/ (x — í )  (x — 2) '

fuera del mismo intervalo se tiene: y ”  <  o ; luego tiene su 
concavidad hacía  la y  negativa .

Nos falta sólo que estudiar el caso en el cual:

cp” (x„) =  o, ( x 0) =f= o , o lo que es lo mismo:

P  (x 0) =  o , P" ( x 0) o ;

y  generalizando más la cuestión, el caso en el cual:

f" (x 0) =  ? ”  ( x 0) =  .......=  f<n)(x 0) =  o ,

f (n +  í) (x 0) +  o ,

siendo n par; de m anera  que la primera derivada que no se
anula, a partir de la 2a, y  para x  =  x u, es de un orden impar
de derivación.

Resulta entonces que la función f' (x ) ,  del coeficiente an ­
gu lar  de la tangente, pasa por un m áx im o o un mínimo, 
para x  =  x 0 , según que se tenga respectivamente:

f(n -j- 1) (Xo) <  Qf o: Yn ( x 0) >  o ;

pues, la primera condición, para dicho m áx im o o mínimo,
f” (x 0) =  o , y a  la suponemos llena. L a  función (x )  con­
siderada en los casos anteriores, en el presente no pasa  ni 
por un máximo ni por un mínimo, para x  =  x 0 .

y =  +
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P ara  fijar las ideas, hagamos n =  2 y

r m (x0) I  P” (x$  >  o ;

entonces, P (x n) es un mínimo del coeficiente angular de la 
tangente, P ( x ) , y  como x n está encerrado dentro de un in­
tervalo (a, b ) , b a , en el cual f (x) y  sus derivadas son 
definidas y  continuas, se tendrá que en la proximidad del 
punto M  (x 0, y 0) y  para x  <  x n, P (x) es una función de­
creciente, y  que para x  >  x 0, f  (x) es una función creciente
(una función al pasar por el valor mínimo, primero es de­
creciente y  después creciente).

Esto se efectuará en el caso de la curva de la figura 4, 
y en la cual, el punto M  (x„, y„) se llama punto de inflexión.

( r j

Además, sí para valores de x  inferiores a x (), o sea den­
tro de un cierto intervalo (a1 , x 0), P (x) es función decreciente, 
entonces í”  (x )  será menor que cero, y  el arco A M  corres­
pondiente a la función y  tendrá su concavidad hacía la y  
negativa ; y  sí para valores de x  superiores a x „ , o sea den­
tro de un cierto intervalo (x0 , b,), P (x) es función creciente, 
se tendrá que i,f (x ) o, y  el sentido de la concavidad de 
M B  será hacía  la y  positiva. Luego, en el punto de in­
flexión, la curva atraviesa su tangente en M.

Empleando un razonamiento análogo veremos que si

f” (x0) =  o , y P" (x0) <  o ,
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entonces f  (x 0) es un m áxim o de f  (x ) ,  y  la disposición de 
la curva en la proximidad del punto M  (x t), y (l) será como de 
la figura 5.

Como consecuencia de todo esto, podemos dar la siguien­
te regla general re lat iva al sentido de la concavidad de una 
curva y  a la determinación de sus puntos de inflexión:

S i  en una curva y  === f (x )  se tiene:

í ”(x 0) =  £” ’ (x„) = .......=  fln,(x„) =  o,

* “ +  *> (x „ )  o ,

si (n —|— 1) es par, dicha curva es convexa en el punto de 
abscisa x f, , y  su concavidad será hac ía  oy  si

fin í) o ,  o hacía  la y  negat iva  sí

f(n -f í) ( x n) <  o .

(Obsérvese que si (n -(- 1) =  2 , la hipótesis será:

f  ( x 0) =  o , i”  ( x 0) i= o).

S í  (n -J- 1) es impar, la curva tiene una inflexión en el 
punto de abscisa x 0 ; la disposición de su inflexión será como



en la figura 4 sí f(n (x o) >  o ,  y  como en la figura 5 sí

f(n J  <  o .

En general, la determinación de los puntos de inflexión 
de la curva y  =  f (x )  se hará  buscando las raíces de P  (x) 
en los intervalos en los que la función y  sus derivadas son 
definidas y  continuas.

Sustituyendo el valor de dichas raíces en fm (x) se sa­
brá, por el signo de esta, la disposición de la curva en el 
punto de inflexión encontrado, pudíendo también averiguarse 
la concavidad antes y  después de dicho punto.

S í  P  (x )  no da n inguna raíz, la curva no tiene puntos 
de inflexión, como sucede en la de la figura 1.

E j e m p l o . Construir la curva:

£
y  =  e x ( J .  Tannery)

y  estudiar su concavidad. (Figura 6)
Las  dos primeras derivadas de y  son:

£ 
x

e
ó tx '
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£
X

1 1

tt -I- 2 x  e e ( 2 x t  1 )

x x

En esta función y  se presenta una s íngu la i idad . sí x  
tiende hacia  cero por valores positivos, se tiene:

£
g

y  — e =  ce

(£ =  infinitamente pequeño positivo);
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y  sí x  tiende hacía  cero por valores negativos, resulta que
i

- s  í  \
y  =  e =  — =  —  =  o;> W v

es decir que la ram a de la curva que se presenta con sus 
abscisas negativas , se detiene en el origen. A  esta s ingula­
ridad se la l lama: punto de detención.

En las derivadas, sí x  tiende hac ía  cero por valores 
positivos, se tiene:

y '  =  —  ,  y ”  =  «  ;

# Oy sí por valores negativos, toman la forma cuyo verda­

dero valor vamos a buscar:

Jo  y '  --- J *
* ' y  T^V- X  i CC 

c

Calculemos el va lor del denominador, haciendo 3 

y  que n tienda hacía  el infinito; entonces:

1
n

3 -  e n 2 X     X  (n veces).

Ahora , busquemos el limíte de

V  n 2 =  n n , tendremos: L n n =  —  L n ;
n

2 L n 53 (2 L n ) '  2lím. L n n =  =  -f- =  =  —  =  o
n " ( 11) * n

(hemos aplicado la regla de U  Hospital);
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l u e g o  l i m  n  \ f c o n  lo  q u e  se  t i e n e :

í
.2 e 3 =  3 , y ’ =  _ l L  - o.

 ̂ 9e-  c*-

2°.
l - 2 s

í
l - o

o X
£4 e

C a l c u l a n d o  e l  v a l o r  d e l  d e n o m i n a d o r ,  c o m o  en  el c a s o  
a n t e r i o r ,  y  e m p l e a n d o  e l  m i s m o  p r o c e d im i e n t o  h a l l a m o s  q u e :

lím n n =  1 , £1 e 3 =  —- =   X  X•> n n
\ / n ‘ V n 1 

(n  v e c e s ) ,

js 1 e 3 =  c ; luego, y ” =  —  =  o.es

Encontramos, pues, que la función y  y  s u s  derivadas y  
y  y "  son definidas y  continuas para todo valor de x, menos 
para x  =  o : el eje oy, x  =  o, es una asíntota. La tangen­
te en el punto de detención es el eje ox; pero a ic o 
no se le puede considerar como un mínimo, pues 
no de y* es siempre negativo y  la función y, 1 <
(para el mínimo de y  se requiere que ^entl° e U?  ne?a- 
en que y  sea continua, y f se anule pasando e va
tívos a positivos).

T am b ién  se anula y * para x  =  ± ~ » C(jl i e jc°la^ asín- 
a la  función el valor: y  =  », que es la ordenada de la asi
tota paralela a ox. (Recta A 'A ).
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Conforme a la teoría expuesta sobre la concavidad y  
puntos de inflexión, estudiemos:

i

r t t s  \ t ,  e  ( 2 X  +  0f (x )  =  y  = --------- —¡-------
X

esta derivada se anula para

1

valor con el cual:
-2

2 1 y  2 *e* e _

vimos que también se anula para x  =  — £, pero la función 
deja de ser continua. La curva tiene un solo punto de in­
flexión:

1 ( —  y »  ~p)-

Para  x  >  se tiene: y ”  o, y  la concavidad es h a ­

cía oy.

P a ra  x  < ----- — se tiene: y ”  < o, y  la concavidad es h a ­

cía oy '.

Los valores particulares de x  que hemos obtenido, orde­
nados desde

— °o hasta  -f- °o, son:

1 —  i
° o , ------2 ’  + £> +  °°t

con los cuales se dispone el cuadro siguiente:



i.:n!VEksiimí> ci: ni 34,3

X y ” y ' y

— Oo 0

decrece, —

1

decrece, -f-

1
2

O 4 ,
o min. e - e =  0,135

+ crece, —
*•

decrece

+ £
o 0

- t • • -  Oq oo
•

+ crece, — decrece, -j-

+  Oo 0 1

e =  2 ,718.. .

El procedimiento indicado para construir una curva 
y  =  f (x )  nos ha servido también para la determinación de 
las asíntotas, paralelas a oy o a ox, y  además, la posición de 
la curva con relación a ellas. Nos faltará solamente que de­
terminar las otras asíntotas que puedan haber.

Sabemos que éstas se determinan por medio de su coe­
ficiente angu lar  c y  de la ordenada d, correspondiente al punto 
de su intersección con oy (ordenada en el origen). El valor 
de c se obtiene buscando en la ecuación de la curva el limíte

de la relación —  para x  =  + °o¿ y  el de d, después de en-
x

contrado el de c, buscando en la misma ecuación el límite de 
(y  — ex), para x  =  +_ °o. Se tiene:

c" =  lím. — , d =  lím. (y  — ex),
x
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para x  =  j_  °o ; entonces, la ecuación de la recta asíntota será:

ex H- d.
En la ecuación

í

e x
se tiene:

í

y   ̂ xc == lím.—  =  lím. ----- =  o, para x  =  + x i
x  x

_£
d =  lím. y  =  lím. e x =  1, para x  =  +_ » • 

entonces, la asíntota será: y  =  1, que ya encontramos ante



M ás adelante, al estudiar la teoría relativa a la construc­
ción de curvas dadas por una ecuación entera de la forma:

f (x , y )  =  o,

veremos también otro método para la determinación de las 
asíntotas, y  que será aplicable a una ecuación algébrica de la 
forma: y  =  f (x ) ,  después de volverla entera.

Ciertas curvas pueden también admitir una curva asín- 
tótíca. Sea :

f.u (x)

UNIVERSIDAD CEN TRAL

7 t  (x) ’

donde suponemos que fm (x) y  f„ (x) son polinomios enteros 
en x ,  de grados m y  n respectivamente, además, m > n  +  2 , 
o: m =  n -j- p, siendo p un número entero por lo menos igual 
a 2. Efectuando la división de la relación dada, tendremos:

o )  v — fin fe) =  f (x ) j _ R  /-xJ_
1 y  -  f. (x) *" W  f„ (x) ’

donde fp (x) es un polinomio entero en x, de grado p, y  R  (x) 
es también entero, pero de un grado inferior a n. La curva 
dada por esta ecuación ( 1 ) admite a f,, (x) como curva asíntótí- 
■ca. En efecto, si construimos:

(2 ) y { =  fP (x),

y  consideramos la diferencia y  — y l entre las ordenadas de 
dos puntos de estas dos curvas que tengan una misma abscisa 
x, dicha diferencia tiende hacía cero para x  =  + ~ , pues se 
tiene entre ( 1) y  (2 ):

R (x)
y  -  *  =  X S P

fracción en la cual el grado del numerador es inferior al del
denominador, y  por consiguiente tiende hacia cero paia
x = ± » .

Lo que quiere decir que las ramas infinitas de la curva 
12 ) tienden a contundirse con ciertas otras de la curva ( 1).
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v y  v

Decimos entonces que la (2 ) es curva asintotica de la (1 ), 

E j e m p l o . Construir la curva:

x* o . x
X*

-  =  X -  +  x : r _  ('Figura 7)

Calculemos, sus derivadas:

, 5 x 4 ( x :! — 1 1 — 3x '  2 x '  — 5 x  l x 1 (2 x 3 — 5)
=  ( x ’: — J)- ( x y — l ) 2 ~  ( x :i —  112 ;

„  ( x :; — 1) (1 4 x ‘; — 2 0 x ,T) -f 6x 2 ( 5 x l — 2 x ‘)
y  =  '  '  ( x a — l ) 3 ’

2x 3 (x° — 2x 3 +  1 0 ) 
y ' ~  ( x 3 —  l ) 3

La función y  sus derivadas son definidas y  continuas, pa­
ra todo valor de x , menos para el que anuía a cada denomi­
nador, x  =  1. La parale la  a oy: x  =  1 (recta A A ') ,  es una 
asíntota; y  según la teoría que acabam os de exponer, la pa­
rábola: y , =  x", de eje oy  (representada con línea de pun­
tos en la figura 7), es curva  asíntótíca de la  propuesta; en
efecto, para x  =  + ~ , la diferencia:

x ;í — 1 x  — \ '
x 2

entre las ordenadas de una m isma abscisa x ,  tiende hacía 
cero.

La curva pasa  por el origen, y  como y f se anula para 
x  =  o, es tangente en este punto al eje ox  y  a la  parábola 
asíntótíca.

Tam bién  y ”  se anuía para x  =  o.
Al estudiar la  concavidad, observemos primeramente que 

el factor de y ” ,

x ,; — 2x ;j +  10 ,

«
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es siempre positivo; en efecto, sí hacemos: z =  x :i, z'2 =  x G, 
dicho factor equivale al siguiente trímonío de 2o. grado en z:

z2 — 2z +  10 ,

cuyas raíces son imaginarías y  el coeficiente de z 2, positivo.
Luego, este trímonío es siempre positivo para todo valor 

de Z, y  por lo tanto, también lo será el factor considerado, 
para todo valor de x .

S igam os investigando el signo de y ” :
Para  x < o ,  y ”  es positiva, y  la concavidad es hacía oy.
P ara  valores de x  comprendidos entre o y  1, y ” es ne­

gativa y  la concavidad es hacía oy'.
P a ra  x  > 1, y "  es positiva y  la concavidad es hacía oy.
El origen es, pues, un punto de inflexión; el sentido de 

la concavidad de la curva cambia al atravesar este punto.
3 __

P ara  x  =  ]/"§“> y* se anula pasando de valores negativos a 
positivos, y  la función y  pasa por un mínimo que es:

5 5

En la ecuación de la curva, la relación:

V x ‘
x  x ” — 1

crede indefinidamente para x  =  ±  «  ? luego existe, además 
de la asíntota x  =  1, una dirección asintótíca doble, parale­
la a oy. En este caso se tiene:

y  =  co, para x  —1 ¿  a , y  se dice que las asíntotas 
respectivas se han alejado hacía el infinito, y  que la curva 
presenta dos ram as parabólicas en la dirección oy. (Toda 
parábola tiene dos ramas infinitas correspondientes a una di­
rección asíntótica paralela a su eje de simetría).
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lores Ed e x :adr°  ,ig<llente £$tá formado co"  los siguientes

3

—  <», o, i ,  y ± .t +  x .

Escsi7*
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X y tt
y ’

y

---  CO --- CO 23

\I crece, — decrece, +

O 0 o, max. 0

decrece, — decrece, —

1

— 23

— co +  0 3

+ crece, — decrece, -f-

1 3 3 1

V t

0 5 n/6,25,
3 1 mínimo

1

— — crece, -f- crece, +

+  * +  * H- »

II. Curva dada por una ecuación entera de la

forma: f (x, y,) =  o.

Cuando esta ecuación sea de fácil resolución con respec­
to a una de las coordenadas, por ejemplo y f podremos formal 
funciones explícitas, equivalentes en conjunto a la propuesta. 

Por ejemplo, sea la ecuación de 2o. grado en y :
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Resolviéndola, tendremos:

+  x

V  (x -  í) (x -  2) *

o sean las dos funciones explícitas:

V (x  — í) (x — 2) ' V (x  — 1) (x — 2) '

cuyas  curvas construimos en la figura 1. El conjunto de es­
tas dos curvas representa la de la ecuación dada.

P a ra  el caso en que no sea posible, o sea m uy  difícil, for­
m ar explícitamente las funciones y , ,  y.2>... y.), recurriremos a 
otros métodos para la construcción de la curva.

Recordemos que el coeficiente angu lar  de la tangente, en 
un punto M  (x0, y 0), de una curva f (x, y )  =  o, está dado 
por la relación:

, =  _  U’ (X„, y„)
f/ O,,, y„) ’

siempre que las derivadas parciales no se anulen ambas a la 
vez para los valores x („ y (); entonces y j  tendrá un valor finito 
o infinito, y  M  (x 0, y (() se l lama punto ordinario.

S í  Yq toma la f o r m a e l  punto M  (x (), y 0) se llama 

s ingu lar ,
L a  determinación de los puntos s ingulares de la curva 

se hará ,  pues, buscando los va lores de x  y  de y  que verifi­
quen las tres ecuaciones siguientes con dos incógnitas:

f (x ,  y )  =  o, fx'  (x ,  y )  =  o, f/ (x , y )  =  o.

Las  tangentes en estos puntos, buscaremos por otro mé­
todo, cuya  teoría no la podremos exponer claramente antes de 
íecordar algo sobre las funciones homogéneas y  a lgunas de 
sus propiedades, y  sobre un haz  de rectas que partan del ori­
gen, todo lo cual nos servirá también para  la teoría de las 
asíntotas en esta clase de curvas.



UNIVERSIDAD C EN TR AL 351

Respecto a la concavidad e inflexión, la teoría expuesta 
anteriormente es aplicable a la curva f (x, y )  =  o, en todos 
los puntos ordinarios cuya  tangente no sea paralela a oy. En 
este caso, siendo y  función implícita de x, sus derivadas ten­
dremos que calcular, como nos enseña el Análisis, por medio 
de las ecuaciones que forman las derivaciones sucesivas de la 
ecuación de la curva, o sean:

f'x (x , y )  + y* f y (x, y )  =  o,

{%  (x, y) + 2f  V’sr (x> y) + y ' 2 (x> v) + y ”  (*> y) =  o,

S i m e t r í a s

Hemos dicho que para abreviar la construcción de una 
curva, debe aver iguarse  la simetría que presente.

I. S í  en una curva y  =  f (x), o f (x, y )  =  o, la orde­
nada y  no cambia de va lor con la transformación de x  en —x, 
la curva es simétrica con relación al eje oy; pues a todo pun­
to M  (x , y )  corresponde su simétrico M ' ( x, y )  con res­
pecto a dicho eje.

E j e m p l o s : Io. Las  curvas: y  =  eos x,

X  _  X

y  =  y (  e a |fj e a )»

son simétricas con respecto al eje oy.
2o. T o d a  curva algébrica que no contenga en su ecua­

ción sino potencias pares de x , es simétrica con relación a 
eje oy.

I

II. S í  en una curva y  =  f (x) ,  o f (x, y )  =  o, la trans­
formación de x  en — x  trae consigo la de y  en yt  a 
curva es simétrica con relación al origen; pues a t o d o  punto 
M  (x , y )  corresponde otro: 1VP ( x , y)> símétiieo e an
terior con respecto al origen o.



E j e m p l o s . I o. La curva y  =  s e n  x  e s  simétrica con 
respecto a o.

2 o. T o d a  curva algébrica en la cual todos sus términos 
sean, solamente de grado par, o sólo de un grado impar, tiene 
simetría con respecto a o. Están en este caso las curvas:

y  =  x ;:, A x y ' J + B x ' y 2 + C x ' :y  + D x ’2 + E =  o.

(Obsérvese que una ecuación homogénea, cuyos térmi­
nos sean sólo de grado impar, carece del término constante, 
y  por consiguiente la curva respectiva pasa  por el origen, que 
es centro de simetría y  punto de inflexión).

En los casos I y  II, para  construir la  curva se conside­
rarán  solamente los valores positivos de x ,  y  se concluirá la 
construcción teniendo en cuenta la  simetría.

III. S í  una curva f ( x ,  y )  =  o, contiene en su ecuación 
sólo potencias pares de y ,  la transformación de y  en — y  no 
cambia el valor de x ,  y  la curva es simétrica con respecto al 
eje ox.

E j e m p l o . L a  curva y a  construida en la figura 1, cuya  
ecuación vuelta entera es:

y 2 ( x  — 1), (x  — 2 ) — x -  =  o.
t1

En este último caso, para  construir la  curva se conside­
rarán  sólo los valores positivos de y ,  y  se tomará en cuenta
la simetría.

F u n c i o n e s  h o m o g é n e a s .

S e  dice que una función f (x ,  y , . . . )  de v a r ía s  variab les 
es homogénea y  de grado m, sí se tiene:

( 1) f (tx, t y , . . . )  == tm f (x ,  y , . . . ) ,

siendo t una cantidad cualquiera.

ANALES  DE LA
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E j e m p l o s . La f u n c ió n :

f (x , y )  == A x '2 + B xy  + C y 2 

es homogénea y  de grado 2 , pues, según la definición se tiene: 

f (tx, ty) ~  A t 2x 2 + B t2x y  + Ct2y 2 — t2 f (x, y).

La función:

x
y :i x 'J o

es homogénea y  de grado — 2 .
Se  ve fácilmente que:
1°. S í  se multiplican entre sí varías funciones homogé­

neas, el producto será otra función homogénea de grado igual 
a la suma de los grados de las funciones.

2 o. La potencia n de una función homogénea de grado
m, es otra función homogénea de grado nm.

3o. Consideremos una función homogénea de grado m,
y  en la identidad ( 1) que nos sirve de definición hagamos

t =  — : tendremos: 
x

 > - « » , ■ £ ,   ><X  A  A

luego, una función homogénea de grado m, dividida por la 
potencia m de una de las variables, por ejemplo por x m, da 
por resultado otra función que no depende sino de las rela­
ciones de las otras variables a x.

H a z  d e  r e c t a s  q u e  p a r t a n  d e l  o r i g e n .

En el plano, un haz o conjunto de m rectas que partan 
del origen está representado por una ecuación entera en x  y  y*
homogénea y de grado m.

En efecto, sean las m rectas:

y  — c, x  =  o, y  — Co x  =  o  , y  — cra x  -  o.
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El producto de los primeros miembros nos da la s iguien­
te ecuación entera en x  y  y ,  homogénea y  de grado m:

( J i  (y  — c, x )  (y  -  c, x )   (y  — c„, x) =  o,

y  es evidente que, las coordenadas de todo punto que perte­
nezca a una de las rectas nulítarán a esta última ecuación, 
y  las de los puntos que no pertenezcan a n inguna de éllas, 
no la nulítarán, puesto que no nulítan a ningún factor. Luego 
la ecuación ( 1) es la del conjunto de las m rectas.

De estas m rectas, sí h a y  n que se confundan entre sí 
con el coeficiente angu lar  c , , en la ecuación ( I j  se presentará 
un factor: { y—c i x )n, con el cual el enunciado subsiste. Igual­
mente, sí entre las m rectas h a y  n de ellas que se confunden 
con oy, en la ecuación ( 1 ) se presentará el factor: x n, con el 
cual queda siempre entera, homogénea y  de grado m.

Probemos la proposición recíproca: U na ecuación entera 
en x  y  y ,  homogénea y  de grado m, representa un haz de m 
rectas, distintas o confundidas, reales o im ag inar ías ,  que par­
ten del origen.

En efecto, ordenando la ecuación considerada según las 
potencias decrecientes de y ,  será:

(2) f (x , y )  =  A n y m+ A x y 1" '1 x-j-A., y  m' 2 x 2- ( - . . . + A inx m= o .

Supongamos primero que el coeficiente de y ni no sea nulo. 
En esta ecuación, para x  =  o, se tendrá y  =  o, solución que 
corresponde al origen. S í  con cualquier otro va lor de x, di­
vidimos ambos miembros de (2 ) por x m, tendremos:

(3) A n ( ^ ) +  A, ( X ) " ‘- '  + ...........+  A,„ =  o.
X X

Considerando a como sí fuera una sola incógnita, lax
ecuación (3) de grado m tendrá m raíces, distintas o múlti­
ples, reales o im aginar ias ,  o sea, las siguientes soluciones:
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en las que cada una representa una recta que pasa por el
origen.

S í  en la ecuación (2 ), A () =  o, A, =h o, sacando x  en 
factor y  dividiendo ambos miembros por x"1' 1, tendremos:

(4) x +  A m O

ecuación cuyo primer miembro se descompone en estas dos: 
x  =  o, o sea el eje oy, y  el factor entre corchetes que repre­
senta, según lo que acabamos de ver, m -1 rectas distintas de 
oy y  que parten del origen.

S í  A (, — A ] — o, se sacará x 2 en factor que representará 
dos rectas confundidas con oy; y  así sucesivamente. Queda 
pues probada la proposición recíproca.

Observemos que los coeficiente angulares y  finitos de las
y

rectas están dados por las raíces de la ecuación (3) e n — , y
X

sí el haz tiene una o var ías  rectas que se confundan con oy, el 
primer factor x" de una ecuación de la forma (4) representará 
dichas rectas de coeficiente angular infinito.

Por lo visto, sí en la ecuación (2 ) del haz de rectas susti­
tuimos x  por 1 y  y  por c, las raíces de la ecuación resultante 
en c:

f ( 1, c) =  o,

serán los coeficientes angulares finitos: c t , c.2 ,  cm de
dichas rectas. En el caso de que una de estas raíces Cj sea
im ag inar ía ,  tendremos:

c =  — a —j-  b i , o sea:
1 x

y  =  (a +  bí) x  , 

y  la recta correspondiente es imaginaría.
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Tangentes en los puntos singulares de una curva de ecuación
entera: f (x, y) =  o.

Hemos visto cómo se determinan estos puntos; ahora, 
para determinar también las tangentes en cada uno de ellos, 
traslademos previamente el origen de coordenadas al punto 
singular considerado y  apliquemos la reg la  dada por el si­
guiente teorema:

S i  una curva de ecuación entera f (x ,  y )  =  o pasa por 
el origen, ella admite en este punto una o var ías  tangentes, 
reales o im ag inar ías ,  distintas o confundidas. El haz  de tan­
gentes está representado por el grupo de términos de menor 
grado, igualado a cero, de la ecuación de la curva.

En efecto, la curva carece del término constante, y  ag ru ­
pando los términos que tengan un mismo grado en funcio­
nes separadas señaladas con índices n, n -f- 1, ..........  de su
respectivo grado, tendremos:

( 1) f (x ,  y )  =  f„ (x , y )  +  f n-f í (x ,  y )  + ..........  +

fm (x , y )  =  o.

Como la curva pasa por el origen, el coeficiente angu lar  
c de la tangente en este punto será el limíte de la relación

—  cuando x  tiende hac ía  cero, en la ecuación de la curva, 
x

Sea ,  pues, la relación variable :

x

en la que c f tiende hac ía  c cuando x  tiende hac ía  cero.
T endrem os : y  — c* x , que sustituyendo en la ( 1 ) 

nos dá:

(2 ) f (x , c 'x )  == fa (x , c' x )  4 " fn + 1 (x ,  Ĉ  x )  + ...........+

+  fm ( X ,  Cf X )  =  O.

La función homogénea y  de grado n , f „ ,  multiplicada y  
dividida al mismo tiempo por x" se hace:
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x n f„ (x , c* x )
X11 X" f„ ( 1, c’ )

(V éase  lo sentado sobre funciones homogéneas, 3.°). 
Transform ando de una manera análoga las demás fun­

ciones de la ecuación (2 ), esta se vuelve:

f (X, c ' x )  =  Xn 1  ( J ,  Cf) +  Xn + J fn _Li (1, cO +  - f

+  x "1 fm ( 1, c') =  o, 

que dividiéndola por x n:

(3) f„ ( í , c') -f~ x  fn + í (1, c') -f-  T  x m ~ n fm ( 1, c') ~  o.

Cuando x  tiende hacía  cero, el límite de la ecuación
(3) será:

(4) f,i (1, c) =  o,

ecuación en c cuyas  raíces reales o imaginarías, distintas o 
múltiples, son los coeficientes angulares de las tangentes res­
pectivas, coeficientes que corresponden a la ecuación del haz 
de rectas:

(5 ) f„ (x, y )  =  o ;

con lo cual queda sentado la legitimidad de la regla dada.

O b s e r v a c i ó n : La ecuación (4) no da los coeficientes an­
gulares infinitos, los cuales se deducen de la ecuación (5), 
como hemos visto en la teoría del haz de rectas.

E j e m p l o , Volvamos a tomar la curva de la figura i ,  
cuya ecuación vuelta entera es:

(a )  f (x , y )  == y" (x  — 1) (x  2) x ’ =  o.
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P ara  determinar los puntos s ingulares que pueda tener, 
calculemos sus derivadas parciales que igualaremos a cero:

(b) f; (x ,  y )  =  y 2 ( 2 x - 3 ) - 2 x  =  o,

(c) fu (x,  y )  =  2 ( x  — 1) ( x  — 2 ) y  =  o,

y  busquemos las soluciones comunes a ( a ) ,  (b) y  (c). Las 
de (c) son:

x  =  l , x =  2 ,  y  =  o ,

de las cuales, las dos primeras no verifican a las ecuaciones 
(a) y  (b), pero la tercera, y  =  o, sí las verifica, dando cero 
como valor correspondiente de x ; luego, el origen es el único 
punto s ingular de la curva. P a ra  determinar las tangentes 
en este punto, apliquemos la regla dada por el teorema an ­
terior. El grupo de términos de menor grado de la ecuación 
( a ) ,  igualado a cero nos dá:

2
 0  O  ______________y"

que es la ecuación del haz de tangentes, o sea:

x
+

1/2 '

con lo que vemos que la curva admite en el origen dos tan 
gentes, cuyos coeficientes angu lares  son respectivamente:

1 1
\~2 y  ~  f T  •

A  este punto s ingular se lo l lama punto doble a tangen­
tes distintas, pues, en este caso pasan por dicho punto dos 
ram as de curva.



Asíntotas de la curva dada por una ecuación entera:

f (x> y) =  o.

A s í n t o t a s  p a r a l e l a s  a  o y . Se las determina por la re­
gla siguiente: Las  abscisas de las asíntotas paralelas a o y  son 
las raíces del coeficiente de la mayor potencia de y  (coeficien­
te que será un monomio o polinomio en x) de la ecuación 
de la curva.

En efecto, esta será:

£ O , y )  =  y" f0 O )  +  y '1' 1 f, (x )  + ......... - H »  M  =  o,

y  dividiéndola por y":

«0 (X) +  “  *1 (x ) +  +  (X) =  °*

En esta última ecuación para que y  alcance un valor in­
finito se requiere que:

*o (x) =

cuyas raíces serán las abscisas de las asíntotas buscadas.

E j e m p l o . T om em os el mismo anterior, donde se tiene 
que las raíces del coeficiente de la mayor potencia de y  son:

x  == 1, x  =  2 ,

abscisas de asíntotas y a  encontradas.

A s í n t o t a s  n o  p a r a l e l a s  a  o y .

V am os primeramente a determinar las direcciones j 15*11' 
tótícas de la curva* y  después de conocidas éstas, la oí ena
da en el origen para cada asíntota.

1°. T eo r em a :  El haz de Rectas que parten del origen,
daralelas respectivamente a las direcciones asintóti<_as que ten
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g a  una curva, dada por una ecuación entera, está represen­
tado por el grupo de términos de m ayor  grado, igualado a 
cero, de dicha ecuación.

En efecto, la ecuación de la curva puede escribirse en 
grupos homogéneos de grados m, m -1, m-2 ,  0 , en la for­
ma que sigue:

( 1) f (x, y )  =  fm (x , y )  +  fm. , ( x ,  y ) - f  ........+  Cte. =  o.

S í  multiplicamos y  dividimos al mismo tiempo cada uno 
de estos grupos respectivamente por x ’", x"1' 1,  x ,  la ecua­
ción ( 1) se transforma en la siguiente:

(2) X111 fm ^ 1 ,  “  ^ - r X ' 'fm-j ^ I, “  ^  ~\~ -j-Cte. o.

(V éase  lo dicho sobre funciones homogéneas, 3o.) 

Sabemos que el limíte de la relación — , para x  =x

es el coeficiente angu lar  c de una asíntota. 
S e a  pues la relación variable :

=  c',x

en la que c f tiende hacía  c cuando x  tiende hac ía  el infinito. 
Entonces, la ecuación (2 ) después de dividirla por x'" se hace:

(3) f„, ( J ,  C,)-(- fm.j ( I ,  cOH“ ó fn.-,(í,
x  x -  - x  = o

Cuando x  tiende hacía  el infinito, el limíte de la ecua­
ción (3) será:

(4) fm ( I ,  c) =  o,

ecuación en c cuyas  raíces lea les  o im ag inar ías ,  distintas o 
múltiples, son los coeficientes angu lares  de las asíntotas res-
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pectívas, coeficientes que corresponden a la ecuación del haz 
de rectas:

(5) fm (x, y )  =  o.

O bs e r v a c i ó n :  La ecuación (4) no da los coeficientes an­
gulares infinitos, los cuales se deducen de la ecuación (5) 
conforme hemos visto en la teoría del haz de rectas.

2o. Conocidos y a  los coeficientes angulares de las asín­
totas, vam os a determinar la ordenada en el origen para cada 
una, por el siguiente método:

Siendo d la ordenada en el origen de la asíntota de coefi­
ciente angu lar  c, ésta tiene por ecuación:

( 1) y  =  ex -f- d.

Cortemos la curva dada, f (x , y )  =  o, con la recta ( 1), 
buscando la condición para que por lo menos un punto de in­
tersección se encuentre en el infinito.

T  endremos:

f (x , ex -|- d) =  o,

ecuación en x  que ordenada según las potencias decrecientes 
toma la forma:

x 11 P 0(d) +  X“' J PiOO + ........ +  PnW  =  °»

y  dividiéndola por x n:

(2) P„ (d) H t -  P L (d) -f- ....... +  P 'x s—  =  o-

Un punto de intersección se encontrará en el infinito, 
cuando su abscisa sea infinita; entonces, el limíte de la ecua­
ción (2 ) para x  =  »  será:

(3) P 0 (d) =  o,

polinomio o expresión en d, cuyas raíces serán las ordenadas 
en el origen correspondientes al coeficiente angular c.
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Este método para determinar las asíntotas es m uy eficaz, 
eficacia que no se consigue siempre al buscar el limíte de las 
expresiones:

y—. y  — ex, para x  =  »  , 
x

en las ecuaciones complicadas por el grado de la curva. 

E j e m p l o . S ea  la curva:

f (x , y )  =  y  * (2x  — I) — x '1 x  J =  o.

El coeficiente de la m ayor  potencia de y  es:

2x  — 1, 

expresión que tiene por raíz:

1
x = y ,

o sea, la abscisa de la asíntota para le la  a oy.
P a ra  encontrar las demás asíntotas, igualemos a cero el

grupo homogéneo:

(a )  2x y ; — x 1 =  x  (2y ;! — x ;}) =  o,

que representa el haz  de direcciones asíntótícas de la curva.
En este haz , la recta x  =  o, va lor que verifica (a), co­

rresponde a la dirección de la asíntota y a  encontrada, x =  ^ .  

L a  otra expresión que verifica a la ecuación (a):

2 y '1 — x :J =  o

o sea:

x
W T ’
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corresponde a una dirección cuyo coeficiente angular es:

1
9 / ♦
\/ 2

S í  cortamos la curva dada con la recta:

y  =  v T  +  d'

tendremos la siguiente ecuación que contiene las x  de inter­
sección:

-</ 2
-f- d (2x  — 1) — x 1 -j- x" =  o

en la cual el coeficiente de la mayor potencia de x, igualado 
a cero como lo índica la regla, es:

p  ,  n  _  6 d 1 _

" ^  Â/T2 ° ’

entonces,

d = » *  >— t12 6 t y 2

luego, la asíntota buscada es:

_  x  ,_________________

7  V~2 ^  6^/2

S í  nos fijamos en las condiciones de simetría que hemos 
dado, constataremos que esta curva no posee ninguna de ellas*

Calculemos las derivadas parciales para determinar los 
puntos singulares que tenga, igualándolas a cero.
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(1) f (x , y )  =  2 x y :! — y ' ! — x 1 -|- x'2 =  o

(2) Px (x ,  y )  =  2 y ;i — 4x" -f- 2 x  =  o

(3) Py (x , y )  =  y ‘2 (6x  — 3) =  o.

Las dos soluciones de la ecuación (3) son:

i
y  —- o f x  ~  2 y

de las cuales sólo la primera verifica a todas tres ecuaciones 
con eí sistema de solución común:

o, x  =  o:

luego, el origen es el único punto s ingular de la curva repre­
sentativa de la  ecuación (1).

Como sabemos, las tangentes en este punto s ingular es­
tán representadas por el grupo homogéneo de menor grado, 
igualado a cero, o sea:

OX' =  o

haz de dos rectas confundidas con oy: en el origen van  a 
parar dos ram as de la curva, admitiendo una tangente común 
y  formando lo que se l lama punto de retroceso de primera es­
pecie, en el cual la disposición de la  curva es como índica la 
figura 8.

No la hemos concluido por no a largarnos demasiado y  
hacemos constar solamente que podríamos construirla, hac ien­
do explícita la  función y  que nos da:

x J (x- -  \)  

2 x -  í f (x )>

y  tomando en cuenta las determinaciones que dejamos hechas.
En general, para  la representación gráfica de las expre­

siones:

=  f (x ) ,  o: f (x ,  y )  =  o,

ap licaremos en lo posible toda la teoría que venimos dando.
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S í  la ecuación entera f (x , y )  =  o es de 2o. grado, o bi­
cuadrada, con respecto a una de las coordenadas, por ejemplo 
y t resolviéndola se la puede discutir fácilmente, y  para cons­
truir su curva, investigar lo siguiente:

Io. Los valores particulares de x  para los cuales la 
ecuación, cuya  incógnita considerada es y ,  admita raíces múl­
tiples.

2o. Los valores particulares de x  para los cuales admi­
ta raíces infinitas. Según vimos en las asíntotas, estos valores 
son los que anulan el coeficiente de la mayor potencia de y  en 
la ecuación de la curva.

3o. Los valores de x  para los cuales la derivada y  toma 
un va lor infinito o nulo, y  aquellos quo correspondan a y = o ,  
En una ecuación f (x , y )  =  o, sí hacemos y  — o, el conjun­
to de términos que no tengan y  será igual a cero.

Los valores así encontrados de x , ordenados de — =2 a 
10 f darán ciertos intervalos dentro de los cuales buscare­

mos las diferentes determinaciones reales de y ,  como también 
las que corresponden a la extremidad de cada intervalo.

E j e m p l o : Dados dos puntos fijos F  y  F '  cuya distancia 
es igua l a 2, construir la curva, lugar geométrico de los puntos 
M  para los cuales se tenga:
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Busquemos la ecuación del lugar  en coordenadas rectan­
gu lares cuyo eje x ' x  es la recta F F  y  el origen, el punto medio 
del segmento F F ' .  (F igu ra  9).

L lamando (x , y )  a las coordenadas de un punto cualquie­
ra  M  que pertenezca al lugar , la expresión anterior se con­
vierte en:

l/y2 + (x -  t)- X  Y Y2 + (x -1- í)- =  1,

Ficf. D

o sea:

[ y a + ( x -  I ) 2] [ y j +  (x  +  0 ' ]  =  í >

y  ordenando con relación a y :

( 0  y '  “I-  2y~ (x" -\- 1) x '1 — 2x" =  o .

Notamos que esta ecuación contiene solamente potencias 
pares de x  y  de y ;  luego, su curva es simétrica con respecto 
a cada uno de los ejes coordenados y  al origen. Resolv ién­
dola con relación a y  tendremos:
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y =  ± y  —  x  J —  í ±  |/(X -  +  O 2 +  X 2 (2 — X -)

= ± y — x - — i + y  4  - y  í .

S ig am os  el procedimiento anterior.
Io. Las  raíces múltiples de esta ecuación serían sí se 

pudieran rea l izar  las ecuaciones:

4 x'2 + l = o ,  — x “ — 1 — ]/ 4 x- +  1 =  o , 

lo cual nunca puede efectuarse; o sí:

— x" — 1 +  j  4 x 2 -J- 1 =  o, 

que equivale a la condición:

4 x 2 +  1 =  ( x 2 +  \)\
o sea:

x 1 — 2 x 2 =  x 2 ( x 2 — 2) — o t

cuyas  raíces son: x  =  o ,  x  =  + ] / 2 .
2o. Como el coeficiente de y 1 en la ecuación (1) es la 

unidad, no existen raíces infinitas en y .
3o. Calculemos y f derivando de la ecuación (1) :

f'x (x ,  y )  4 x  (y  2 +  x 2 — 1) _
7  f y (x ,  y )  4 y  ( y 2 +  x 2 +  1)

x  ( x 2 +  y 2 — 1) 
y  ( x 2 +  y 2 +  O*

Con el va lor x  == o que anula al numerador de y , la 
ecuación (1) no admite otra solución que y  =  o ,  la cual es 
la única que anula también al denominador; vemos que el 
origen es un punto singular de la curva, y  se hace -  para 
y  =  o ,  que en la ecuación (1) corresponde a las soluciones

x  =  ± ]/ 2 .

Se  anula y '  junto con la expresión x 2 +  V ~~ 1 * c o ~ 
mo factor; luego, en los puntos de intersección de la cuiva
(O con la circunferencia.
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(2) x -  +  y'2 — 1 =  o ,

de radío oF =  I , la tangente es para le la  a o x . Reso lv ien­
do las ecuaciones (1) y  (2) determinaremos dichos puntos; 
esta resolución nos dá:

x + t i
2 y +

i
2

Los valores de x  que corresponden a y  =  o, los hemos 
determinado y a .

T om ando  en cuenta la simetría de la curva, es suficien­
te considerar solo los va lores positivos que hemos encontra­
do de x ;  estos son:

4?

o,  - 2 “  t y  2 ,  ,

y  vam os a buscar las determinaciones de y  cuando x  var ía  
dentro de cada intervalo.

S í  en la ecuación (1) hacemos: 
y" =  z ,  y 4 =  Z2, tendremos una ecuación de 2o grado en z, 
y  c o n  cuyas  raíces reales z¡ y  Z.2 habrá  las siguientes igua l­
dades:

z¡ -f- Z.2 — — 2 (x -  -f- 1) •< o ,

z, z2 =  x" (x2 — 2).

El producto z, z.2 será negativo sí x  <  ]/ 2 , entonces en 
la suma z¡ -f- z.,, una de las raíces será positiva y  la otra, 
de m ayo r  va lor absoluto, negat iva ; luego, en el intervalo de 
la  var iac ión  de x  (o, ]/ 2 )  solamente la raíz positiva de Z 
determinará valores reales de y :

y  =  ±  y r .

El producto z, z., será positivo sí x >  y 2 ,  entonces Z! y  z.2 
son de va lor negativo y  no determinan ningún valor real
de y .
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Luego, la curva se encuentra encerrada entre las dos pa­
ralelas a o y ,  x  =  ± ]/T, y  entre las dos paralelas a o x,

y = ±  2 •

Nos falta solo que determinar las tangentes en el punto 
singular encontrado, las que están representadas por el gru­
po homogéneo de menor grado de la ecuación (1), igualado 
a cero:

2 y '  — 2 x '  =  o, o sea: y  =  + x,

primera y  segunda bisectriz.
El origen, centro de simetría, es pues un punto doble, a 

tangentes distintas, y  un punto de inflexión común para am­
bas ram as.

La superficie engendrada por la revolución de esta curva 
alrededor del eje x '  x , será en el espacio, el lugar de los pun­
tos M  para los cuales se tenga:

M F  X  M F '  =  1 .

En la ecuación ( í )  encontramos que el grupo homogé­
neo de términos de mayor grado igualado a cero,

I I ^ o o » .1  
x 4 4* 2 x '  y  r  y  — °t

haz de las direcciones asíntóticas de la curva, representa cua­
tro rectas imaginarías .

Procedimiento para construir una curva cuya ecuación

de grado m, f (x, y) =  o,

es de difícil resolución con respecto a cualquiera de las coorde­
nadas.

Prim er  m é t o d o . Ante todo se buscará las direcciones 
asíntóticas de la curva. S í  cortamos a esta por medio de una 
recta variable y  paralela a una dirección asintótíca encontrada,
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se podrá determinar todos los puntos que se quiera de la cur­
va , por sus intersecciones con dicha recta.

S e a  la recta secante:

Y =  c x  +  d , (1)

en la que c es el coeficiente angu la r  de una asíntota a la cur­
va ,  y  d un parámetro arbitrario. Las  x  de intersección están 
dadas por la ecuación:

f (x , c x - f  d) =  o ,  (2)

cuyo grado es siempre inferior al de la curva, puesto que para 
determinar las asíntotas hemos hecho, en su ecuación, que el 
grupo de términos de m ayor  grado m sea igual a cero, o sea:

fm (x ,  y )  r= o ,

y  c está dado por

fiu (  L  c )  ---- O t

mientras que el grupo de grado m de Ja ecuación (2) sería:

fm (x ,  c x )  =  x “1 fin (1, c ) ,

y  entonces el coeficiente de x m se nulíta; con lo que el grado 
de la ecuación (2) es inferior a m. La discutiremos, sí su g ra ­
do se presta para ello, siguiendo el procedimiento que nos sirvió 
para la construcción de la curva anterior, o sea: buscar los 
valores particulares de d para los cuales la ecuación (2), cu­
y a  incógnita es x ,  admite raíces múltiples, infinitas o nulas.

Con estos valores de d formaremos intervalos de la v a ­
riación de este parámetro, de — ® a - j-  K , intervalos a los 
que corresponderán diversos arcos de la curva limitados por 
una o dos para le las a la dirección asíntótíca, pues, las raíces 
múltiples de la ecuación (2) corresponden, bien a los puntos 
múltiples de la curva, que admiten dos o más tangentes distin­
tas o confundidas, o bien a los puntos en los cuales la secante 
( J )  se hace tangente a la curva. Las  raíces a lcanzan un v a ­
lor infinito cuando la secante es una asíntota, y  se nulítan 
cuando la curva atrav iesa  al eje o y ;  las primeras correspon­
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den al valor de d con el cual se nulíta el coeficiente de la 
m ayor potencia de x  en la ecuación (2), y  las segundas, al 
valor de d que nulíta el término independíente de x  en la mis­
ma ecuación.

Segundo  m é t o d o . S í  el grado de la ecuación (2) en el 
primer método no facilita su discusión, emplearemos este se­
gundo método, análogo al anterior, pues, consiste en buscar 
las intersecciones de la curva con una recta variable que gira 
en el plano alrededor de un punto singular múltiple.

Por consiguiente, sí el primer método no ha sido aplicable, 
se procederá a la determinación de los puntos singulares de 
la curva, y  se escogerá, para el efecto, aquel en el cual la 
curva admita m ayor  número k de tangentes distintas o con­
fundidas. Enseguida, se trasladará el origen de coordenadas 
al punto escogido.

Sea  la ecuación de la curva, relacionada al origen es­
cogido,

f (x, y )  =  o ; 

la secante var iab le  tendrá por ecuación:

y  — Y x , (*)

en la que y  es el parámetro arbitrario que nos sirve para 
determinar los puntos que se quiera de la curva, dados por 
sus intersecciones con dicha secante.

Las  x  de intersección están dadas por la ecuación:

f (x , Yx ) =  °»

o sea por:

x k cp (x , y) — 0 (2)

El grado de <p (x , r )  en x  será m — k  si m es el grado 
de la curva y  k  el orden de multiplicidad del punto singu ai 
escogido (m >  k) ;  pues, una recta cualquiera corta a una cur­
va de grado m a lo más en m puntos, reales o imaginarios, 
distintos o confundidos; y  como la ecuación (2) tiene ya ,  en e 
primer factor x \  k  raíces de x  que se nulitan, resulta que para 
el siguiente factor cp (x, y) quedarán a lo más m k raíces,
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reales o im ag inar ias ,  distintas o múltiples; luego, el grado de 
y (x ,  y) será m — k. Esta es la razón por la cual se aconse­
ja escoger el punto en que k  sea m ayor, con lo cual se facilita 
la discusión de la ecuación (2), limitándose a hacerlo sólo con

7 (x > Y) =  o, (3)

y  siguiendo el mismo procedimiento del primer método, o sea, 
buscar los valores particulares de y  para los cuales la ecuación
(3), cuya  incógnita es x, admite raíces múltiples, infinitas o 
nulas.

De esta m anera  lograremos separar los diversos arcos de 
la curva dentro de ángulos conocidos que tienen su vértice en 
el origen.

Lo dicho vamos a ac larar  con el siguiente ejemplo:
Construir la curva: (F íg . 10)

x 1 — x 2y  -|- y  : =  o. (a )

Como vemos que el primer método no es aplicable, bus­
quemos los puntos s ingulares que tenga la curva, conforme y a  
se sabe hacerlo, igua lando a cero cada una de las derivadas 
parciales de la ecuación (a) .

x  ( 4 x 2 — 2y )  =  o, (b)

3y'2 — x -  =  o (c)

El único sistema de solución común a las tres ecuaciones 
(a), (b) y  (c) es: x  =  o, y  =  o, luego el origen es punto sin­
gu lar  de la curva, en el cual admite las tangentes dadas por el 
grupo homogéneo de menor grado igualado a cero, o sea:

• # .) / O
y '  — y x _ =  y  ( y  — x 'J  =  o, 

haz  que se descompone en las tres siguientes rectas:

y  =  o, y  =  x  ( I a. bisectriz),

y  =  — x  (2a. bisectriz).
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La curva presenta en el origen un punto triple a tan­
gentes distintas. A l  corlarla por medio de la recta variable:

yx ,

tenemos la siguiente ecuación en x:

x 1 —  Tx :l +  Y ' V  =  X 3 ( x  —  v  +  =  o ,  , d ;

que confirma lo dicho en la teoría respecto a m — k. 
Discutamos la ecuación (di.
Igualando a cero su primer factor, es una solución que 

corresponde al origen. Las demás soluciones están dadas por:

<p (x > r )  =  x  —  y  +  r  =  o,

o sea:

x  =  y  (I — f ) ,  (e)

ecuación que, por ser de primer grado, no admite raíces múl­
tiples; a cada va lor de y  corresponde un solo valor para x  
y  uno solo para  y . Las  raíces nulas corresponden a valores 
de y  iguales  a los coeficientes angulares de las tangentes en 
el origen. En las raíces infinitas observamos que si Y tiende 
hacia el infinito por valores negativos, el punto de intersec­
ción correspondiente será x  =  a , y  =  — ~ ; y  sí lo hace 
por valores positivos, tendremos x  =  — 3 , y  =  — x .  
Tom ando  en cuenta esto, y  que las direcciones asintótícas de 
la curva son para le las  a oy, se deduce que ésta presenta dos 
ramas parabólicas en dicha dirección, siendo además las úni­

cas ram as  infinitas de la curva (ramas A 'O  y  AO), puesto 
que a cada va lor finito que. demos para y, corresponde un 
solo valor finito para x  y  uno solo para y .

Busquemos en la ecuación (e) el máximo o mínimo de x.

x* — í — 3y ' =  o,
•  *  9/

• x” r  =  — 6 y.
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El m áx im o se tiene para

r 3Y --  -----
3

entonces

2] 3 2
x  =  - y - >  Y =  Yx  =  Y '

El minimo se tiene para

/ 3Y  — ----------------!-----------

3

entonces

2 ]/T  2
x =  'y-f y =  Tx =  y

Como la ecuación de la curva contiene sólo potencias 
pares de x , es simétrica con relación al eje oy, y  para cons­
truirla estudiaremos solamente los va lores positivos de x ,  que 
corresponden a la  var iac ión  de y  dentro de los intervalos 
(o, 1) y  (— ~ , J), los cuales hemos deducido de la ecua­
ción 1 e).

P a r a  m ayor  precisión en la construcción de la curva, 
calculemos también el m áx im o o mínimo de y .

y  =  y X =  y -  —  y \  

y*Y =  2y  (X —  2- r ) ,

y ” . = 2 - 1 2  y 2.
/ , J /

El m áx im o se tiene para

Ví ± y  2
2
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entonces

* y  . f ~2x  =  —  =  + *4 y 4

El mínimo se tiene para y  =  o, entonces y  =  o, x  =  o.
T o d a s  estas determinaciones nos sirven también para de­

ducir el sentido de la concavidad de la curva, y  facilitar más su 
construcción; así, en los puntos correspondientes al máximo o 
mínimo de x ,  la tangente es paralela al eje oy, y  la curva tíe-

F iS ' í 0

ne respectivamente su concavidad hacía ox o hacía ox; y  en 
los puntos que corresponden al máximo o mínimo de y ,  a 
tangente es paralela al eje ox, y  la concavidad es respectiva-
niente hacia oy '  o hacía oy.
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III. Curva definida por las ecuaciones
x =  f, (t), y  =  f.2 (t).

En estas ecuaciones, t es el parámetro variable que en 
Cinemática corresponde al tiempo. Eliminándolo, podríamos 
obtener ecuaciones de la forma: y  =  f ( x i  o f (x, y )  = o ;  pe­
ro esta eliminación no es necesaria , puesto que la construc­
ción de la curva x  =  f, (t), y  =  f.2 (t), es en sí m uy  fácil.

Cada una de estas funciones de un mismo parámetro t las 
estudiaremos como lo hicimos con la función y  =  f (x); pero 
debe tenerse en cuenta que para  que h a y a  un arco de curva 
que a la vez represente la var iac ión  de estas dos funciones, se 
requiere que dentro del intervalo correspondiente (t lt t j  de la 
var iac ión de t, sean x  y  y  a la vez funciones definidas y  con­
tinuas de t.

A  cada uno de los intervalos en los que esto se verifique, 
corresponderá un arco de curva.

T an g en t e . S ean  dos puntos vecinos: M  (xn, y 0). y
M '  (x0 -f- Ax,„ y () -f- Ay;l) que están sobre una curva de 
ecuación:

x  =  f, (t), y  =  f2 (t).
r

Los valores x u y  y,, corresponden al va lor t(l de t, y  los 
va lores (xu+ A x 0) y  iy„ - j-  Ayni corresponden al valor (t„-f"At0)

El coeficiente angu la r  de la secante M M ' es:

„ _  AYu _  AYq . A x o__.
H 9|A x-1-̂ 0 l0 l0

I

y  sí hacemos que M '  se desplace hac ía  M , siguiendo la cur­
v a  como trayectoria , en el limíte, cuando M '  se aproxima in­
definidamente de M , la secante M1VL es la tangente en M, 
cuyo coeficiente angu lar  es el va lor limíte de c, o sea:

•  i  J

dy„ dx„ _  _
Itm* c — d í T IrW '
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Al construir la curva, discutiremos el valor de este coe­
ficiente angular  m y  determinaremos el máximo o mínimo de 
x  y  de y ,  buscando los valores de t para los cuales se anule 
sólo el numerador o sólo el denominador de la expresión de m.

P a ra  m ayor concisión, en el ejemplo siguiente de cons­
trucción de esta clase de curvas, aplicaremos lo sentado an­
tes en coordenadas rectangulares, indicando al mismo tiempo 
el procedimiento que debe seguirse.

Construir la curva ifíg. 111:

x  =  y ,  y  =  t L t .  ( J .  Bocquet)
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V \ Z W V / \

fr------ñ
t

I------------------------

x ' X y '
M

7

'1
1 0 O

+ crece + crece |

e 0
1
e c

decrece + crece

e i 2

y  2
e i /2 ]/ 2

decrece + crece

+  « 0
•

+

Calculemos la derivada de cada función:

x> =  * ~  L  * , y ' = l + L t .

Las  funciones x , y  y  sus derivados son definidas y  con­
tinuas solamente para  va lores positivos de t .

P a r a  t =  es, se tiene:

y  =  es , lím x  =  y  =  o ,

\
y* — os , lím. x  =  — j p  =  0 '

luego, el eje o y  es asíntota de la  curva. Las  demás asín 

totas encontraremos buscando el límite de cuando x  tíen
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de al infinito, o sea, sí nos fijamos en el valor de x, cuan­
do t tiende hacía  c e ro ; entonces, x  =  — * ,

lím —  =* t" =  o , 
x

lo que significa que h ay  también una dirección asíntótíca pa­
ralela a o x , y  que las ramas de la curva no pueden encon­
trarse o no existen sino en el primer cuadrante y  en el ter­

cero, puesto que la relación — es siempre positiva.
X

P ara  determinar esta asíntota busquemos el limíte de y  
cuando t tiende hacía  cero:

i luego,

■L= — t =  o ;
t ‘

por consiguiente, el eje o x  es la otra asíntota de la curva,
quedando esta en el tercer cuadrante.

La  otra rama de la curva se halla en el primer cua­
drante.

P a ra  t =  1 se tiene:

x  =  y  =  L t =  o .

P a ra  t >  1, x y j )  son posit ivas ;
para t <  1 , x  y  y  son negativas.

V am os a probar que la curva es simétrica con relación
a la bisectriz del ángulo x '  o y , o sea que, a todo punto 
M  (x , y )  de la curva corresponde su simétrico M  ( y>

En efecto, un punto cualquiera M  tiene por coordenadas:

L t  , T ix  =  —  , y  =  t L t ,

lím y
L t
1
t

lim y
1
t

♦♦
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siendo t un número positivo cualquiera. A  todo valor de t
I

corresponde su inverso - con el cual se tiene:

L
1
t

x, =  ------  =  — t L t

t

L t
y. =  — L 1 — i =  — r  =  - x

donde vemos que las coordenadas x , , y ,  son las del punto 
simétrico de M  con respecto a dicha bisectriz. T om ando  en 
cuenta esto, estudiaremos la curva solamente con los valores 
de t m ayores  que la unidad.

V im os y a  que los puntos de inflexión de una curva co­
rrespondían a aquéllos en los cuales el coeficiente angu lar  de 
la tangente pasaba  por un m áx im o o un mínimo; luego, en 
el caso actual busquemos los va lores de t en los que el coe­
ficiente angu lar  m sea un m áx im o o un mínimo:

/  t" ( I +  L t )m ==
x '  1 — L t

su derivada con relación a t es:

2 t (2 — L- t )  
m ”  (1  — L t ) 2 '

la  cual se anula  cambiando de signo sí L - t =  2, o sea sí

±  ] /~ 2_
Lt =  + V  2 , t — e

P a ra  t =  e 1 2 1 m pasa  por un m áxim o, y  el punto de 

inflexión correspondiente M  tiene por coordenadas:
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V  2 |/2

ñ 'x  =* y  =  e r" v  2 .
e

El otro punto de inflexión M, corresponde a

t =  J  2'  =  _ L
]/2e

y  es simétrico del anterior con respecto a la 2a. bisectriz. Sus 
coordenadas son:

e1'1 '

P a ra  Lt =  I, o sea para t =  e, m toma un valor infi­

nito, y  el punto correspondiente es M., 1 *

En este punto, la curva presenta su concavidad hacia ox', 
porque entonces el valor de x  pasa por un máximo.

P a ra  t =  —  se tiene m =  o; entonces el valor de y  pasa
e

por un mínimo cuyo punto es | — e ,  — j  , simétrico

de M , .
y

En el punto M.,, la curva presenta su concavidad hacia oy.
P a ra  construir la curva, tomamos en cuenta su simetría 

y  formamos el cuadro que la acompaña con los siguientes 
valores encontrados de t, a partir de í :

í , e, e * ~ -f- »  .

Al estudiar el sentido de la concavidad de una curva 
y  =  f (x ) ,  dedujimos que la tenía hacía oy o hacia oy ' si y x” 
era de signo positivo o negativo respectivamente, es decir, si 
Yx* era función creciente o decreciente.



;*8 : ANALES  DE LA

P ara  determinar en el caso actual la concavidad de la 
ram a del primer cuadrante, exam inem os comparativamente los 
s ignos de m f y  de x ' :

m* es positivo sí t <  e *

m* es negativo si t >  e f
x* es positivo sí t <  e,

x * es negat ivo  sí t^> e.

Dentro de los siguientes intervalos de t:

( l ,  e) y  ^ e 1 2 ’ co

m* y  x '  tienen el mismo signo; luego, m y  x  var ían  en el m is­
mo sentido, con lo cual y* s es una función creciente y  la con­
cav idad que presenta la curva es hac ía  oy.

Dentro del intervalo de t ( e, z 2 j sucede lo contrarío.

Haciendo e =  2, 71828, el cálculo logarítmico nos ha 
dado:

e 1 2 =  4 ,1132 , —  =  0.36789,

>/ 2 V  2 
t  V T  -  5 ,8168, — 0 ,34383 .

e

IV. Construcción de curvas en coordenadas polares

Con el mismo razonamiento que empleamos al principiar 
este estudio, veremos que sí en la ecuación:

f (<*>), (1)
•  •

el radío vector r es función definida y  continua del ángulo 
polar oj cuando éste var ía  dentro de cierto intervalo, existe en
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el plano un arco de curva representativa de la variación de la 
función en dicho intervalo.

El conjunto de todos estos arcos formará la curva de la 
ecuación (I ) ,  y  los puntos de esta curva serán los únicos del 
plano cuyas  coordenadas polares verifiquen dicha ecuación.

Por  no a largarnos, al ejemplo siguiente acompañamos, 
en lo posible, la teoría y  el procedimiento que debe seguirse en 
la construcción de esta clase de curvas.

Construir la curva (fíg. 12):

,  /«*•
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r =  tangente to — 1 =  f (to).

Io. En esta ecuación vemos que sí a cualquier valor to., 
comprendido en el intervalo (o, 2 ” ), se lo añade un múltiplo 
cualquiera de 2 “ , o sea 2k~, entonces el va lor correspondiente 
de r no cambia; luego, para determinar todos los puntos de 
esta curva será suficiente hacer var ia r  a to en el intervalo 
i o, 2tí ).

Además, al va lor o , de to corresponde el punto M, cuyo 
radío vector es: i\  =  tang. o>J —  1; y  al va lor (tol -J- tú) de to 
corresponde otro punto M ',  cuyo radío vector es igua l al an ­
terior; luego, M, y  son simétricos con relación al polo, y  
en consecuencia, toda la curva.

Tom ando en cuenta esta simetría, se construye primero 
la parte de curva correspondiente al intervalo (o, tz) de la  v a ­
riación de to, y  se concluye después la  otra parte.

2o. En el intervalo (o, ~) de la var iac ión  de to, la fun­

ción r es definida y  continua, menos par to =  —, valor con el

cual r toma un valor infinito, primero positivo y  después ne­
gativo. La dirección asíntótica correspondiente es, pues, per­
pendicular al eje polar ox.

P a ra  determinar esta asíntota busquemos la ecuación de 
la curva en el sistema rectangular x o y .  Se  tiene:

x  =  r eos (o =  eos co (tang. to —  1) =  í, (to),

y  =  r  sen to =  sen to (tang. to — 1) =  f2 (to).

En este sistema, la asíntota es parale la  a oy, y  se pre­
senta un caso y a  estudiado, el de la curva anterior; por consi­
guiente, la abscisa de esta asíntota será el limíte de x  cuando

to tiende hacía  — :

lím x  =  lím eos to (tang to — 1) =  lím *an -̂——

eos to
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luego,
1

lím x eos- co 1
sen co sen co 1.

cos '¿ co

3o. En el mismo intervalo (o, r se anula para
i l

(•)

luego, la curva  pasa por el polo: en este caso, la tangente 
en o tiene por ángulo polar el mismo ángulo con el cual se

anuía el radío vector, o sea co
4*

En efecto, sí consideramos un radio vector variable que 
sea secante a una ram a de curva que pase por el polo, esta 
secante se ha rá  tangente en o cuando los puntos de intersec­
ción se confundan en o, lo cual corresponde al ángulo polar 
dicho.

4o. Hemos encontrado los siguientes valores particulares 
de co, en el intervalo (o, ” ):

t i i l

O
' 4 '  2 ’

i-*

Cuando co var ía  en el intervalo ( o, ■ j , r toma valores

negativos (ram a A O de la figura 12).

Cuando co var ía  en el intervalo  ̂ ^ ^ )» r t°ma valo­

res positivos. (R am a OB).

Cuando co var ía  dentro del intervalo
H
2

, 7z ), r toma va-

lores negativos. (R am a CD).
Las otras ram as de la curva son las simétricas de las 

anteriores con respecto al polo.
En o, la curva tiene un punto doble de tangentes con­

fundidas, primera bisectriz de los ejes.
Nos hemos servido de una tabla con los valores de las

tangentes de los ángulos.


