Por el Ing. Alfredo Reyes A.

ESTUDIO ESTATICO DE LOS SIS-
TEMAS T)EFORMABLES=



Cuando se estudia la estatica de los cuerpos solidos, se
los considera a éstos como formados por una agrupacion de
puntos materiales y hay lugar, entonces, a clasificar a estas
agrupaciones llamadas sistemas en dos categorias:

a).—Si1 se supone que las distancias mutuas entre los
diversos puntos materiales del sistema permanecen invariables
bajo la accidon de las fuerzas exteriores que sobre ellos actuan,
el cuerpo solido se llama Invariable o indeformable y su es-
tudio se completa admitiendo después pequenas deformaciones,
llamadas deformaciones elasticas:

b).— Cuando la distancia entre los puntos materiales son
variables por la naturaleza misma del cuerpo solido que cons-
tituyen y a causa de las fuerzas exteriores, el sistema se
llama deformable.

A esta segunda categoria pertenecen los cables, cadenas,
alambres, cuerdas, etc.; a estos sistemas, cuando estan so-
metidos a la accidon de las fuerzas exteriores sin que pro-
duzcan movimiento, se les aplica tambien las ecuaciones ge-
nerales del equilibrio estatico; pero, para completar su estudio,
es preciso determinar la forma o figura que adopta el cuerpo

deformable, cuando queda en equilibrio.
En el presente estudio quiero indicar algunas nociones

sobre estos sistemas deformables y sus aplicaciones mas
Interesantes.

Sistemas deformables.—Desde luego, facil es comprender
que, por la naturaleza misma de los sistemas delormables,
no pueden en ninguna forma trabajar a compresion; en
cambio, son esencialmente aptos para resistir a los esfuerzos

de extension. o
Sabido es que para que dos fuerzas estén en equilibrio,

dichas fuerzas deben ser iguales y directamente opuestas.
Por consiguiente, si se fija por un extremo un cable o una
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cuerda flexible y se le aplica por el otro extremo una fuerza
de traccion de P Kkg., la cuerda se pone tensa; cualquier
seccion a lo largo de toda la longitud comprendida entre el
extremo fijo y el punto de aplicacion de la fuerza, esta re-
si. '‘cndo a la fuerza de traccion P y en el extremo fijo apa-
re.e una fuerza de reaccion que, de acuerdo con uno de los
principios fundamentales de la Mecanica y, para que el sis-
tema quede en equilibrio, debe ser igual a P y directamente
opuesta. Es decir que la reaccion seria de—Pkg.

Ahora bien, supongamos que en esta cuerda tensa bajo
la accion de P, por medio de un anillo y otra cuerda, ha-
cemos actuar una segunda fuerza P' cuya direccion puede
ser cualquiera. EIl anillo que trasmite la fuerza F, resbala
a lo largo de la cuerda AB hasta un punto C (fig. 1), en
el cual se forma un angulo ACB y el sistema queda en

equilibrio.

/j2 . Z

Dicho equilibrio se hace entre la fuerzas P, F y R con-
currentes en el punto C. Para que estas tres fuerzas concu-
rrentes estén en equilibrio, se necesitan dos condiciones:

la. Que las tres fuerzas esten en un solo plano; vy

2a. Que cualquiera de ellas sea 1gual y directamente
opuesta a la resultante geomeétrica de las otras dos.

Por tanto, P, F y R estan en un solo plano y para
encontrar el valor de la tension R, que es tambien la reac-
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cion del punto fijo B, basta hacer la suma grafica F + P = R
formando cualquiera de los triangulos ABC o ADC (fig. 2).

En la misma forma se pueden considerar varias fuerzas
Mr F.,r P;jeeP Q actuando en diversos puntos del cordon AF

(fig. 3) y cuando todo el sistema esta en equilibrio bajo la
accion de las fuerzas exteriores, el corddon presenta la forma
poligonal ABC DEF y a esta figura se la Illama poligono
funicular (poligono de los cordones)*

Los puntos B, C, D, E, se llaman nudos y en cada uno
de ellos, lo mismo que en la fig. 1, tres fuerzas estan en
equilibrio.  Asi, por ejemplo, en B se equilibran las tensio-

nes P, T,y T¢, en C, P2 T2y T.], etc.
Si se hace uno junto a otro los diversos triangulos de

fuerzas correspondientes a los nudos sucesivos (fig. 4), se
obtiene en conjunto un poligono de fuerzas identico al dina-
mico que se considera en los estudios de la Estatica Grafica.

Inversamente, si a base del dinamico construido con las
fuerzas P,, P,, P, P, y el polo O, se dibuja un poligono
funicular sobre las direcciones de estas mismas fuerzas, se
obtiene la forma como quedaria un cable en equilibrio bajo
la accion de dichas fuerzas (fig. 3).

De lo dicho se desprende que las construcciones de los
poligonos funiculares, se aplican a los sistemas deformables,
con la Unica diferencia de que, en grafostatica el poligono
funicular es una mera construccion geométrica, mientras que
en el estudio de los sistemas solidos flexibles de que veni-
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mos tratando, ei poligono funicular esta formado por cordo-
nes materiales y da la verdadera forma del cable (supuesto
este perfectamente flexible) cuando esta en equilibrio.

Partiendo de las sencillas consideraciones que preceden
y sin necesidad de recurrir a analisis matematicos complica-
dos, se pueden encontrar las ecuaciones de equilibrio para
cables suspendidos, ya sea bajo la influencia de cargas con-
centradas o por la sola accion de su propio peso.

En el estudio de los sistemas deformables los casos de
mayor aplicacion practica son aquellos en gue todas las
fuerzas exteriores estan situadas en un solo plano y son pa-
ralelas entre si. Entonces el poligono funicular esta situado
el el plano de las fuerzas y eéstas son, generalmente, pesos
suspendidos del cable por medio de tirantes.

Consideremos los tres casos siguientes de cargas:

| 0. El cable soporta cargas verticales concentradas, to-
das de la misma magnitud y equidistantes entre si. Este caso
tiene itmediata aplicacion en el estudio de puentes colgantes.

20. EIl cable soporta una carga uniforme por unidad de
distancia horizontal, caso que se aplica al estudio de cables
sometidos a la accidon de su propio peso, cuando la flecha
es pequena con relacion a la luz; las formulas que se deducen

de este caso se aplican también -al estudio de puentes col-
gantes.

30. Carga uniforme por unidad de longitud del cable, caso
que tiene aplicacion para cables suspendidos cuando la fle-
cha es grande con relacion a la luz.

Primer caso.— FuUerzas verticales, equidistantes y de la
misma magnitud.

En este caso, si los puntos de suspension estan al mis-
mo nivel,el cable sera simeétrico con relacion a un eje ver-

tical que pasa por la mitad de la luz. Basta considerar la
mitad del cable.

Por facilidad, dispongamos las cargas de tal manera que
estas sean en numero par; en esta forma no habra ninguna
fuerza en la mitad del cable y la parte mas baja de éste se-
ra horizontal.

Sea X 0 Yy un sistema de coordenadas rectangulares;

oy es eiee vertical de simetria y la mitad de la derecha
del cable es ABCDEFG.
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En los nudos B, C, F... estan aplicadas, por medio de
tirantes, cargas iguales a P.

Sea a la distancia entre los tirantes y ~ y¢las coor-
denadas del primer nudo B.

Llamemos, V)t.......... a los angulos que forman los
cordones BC, CD, con la horizontal; T, a la tension del
cable en el corddon horizontal AB; T,, T T, a las ten-

siones de los cordones BC, CD, etc.

De acuerdo con las figuras 5a y 5b, estudiemos el
equilibrio en los diferentes nudos.

En el nudo B, concurren las fuerzas P, Toy T, Vy
para que esten en equilibrio deben formar un triangulo, si
se las suma vectorialmente como se indica en oab (fig. 5b).
Por ser T o horizontal y P vertical, el angulo oab es recto

y se puede escribir:
tg a, = = y tambien To= T,*cos a,
0,

En el nudo C, las fuerzas en equilibrio son P, Ti1y T 2
pero como T, es la suma vectorial de P y T,, es decir

I P + ic,
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Tambien podemos decir que equilibrio se hace entre
2P, Toy T,, formando el triangulo oac (fig. 5b) y por tan-

to, resulta:

|:)
tg a. _2|_ y To = To eos a,

Estudiando el equilibrio en igual forma para todos los
nudos, se obtienen ecuaciones analogas a las ya encontradas
y que, en resumen, nos dan los dos siguientes sistemas:

P 1
tg a To T, = T, eos a,
2P
tg a. . T, = To eos a,
T
3P 2
tg To (O TLo ==-Taveos a. (2)
npP
tg a, To To— T, eos a»

Como ya iIndicamos, las coordenadas del nudo B son

Las de los demas nudos, de acuerdo con la figura 4a,
seran:

\ X,
Coordenadas de C 2

>y, b a tg a

\ : 2 + 2

1y- y2+ atga = b+ atga, + alga.

Coordenadas de D



UNIVERSIDAD CENTRAL 233

y en general, las coordenadas de un nudo cualquiera que
ocupe un lugar n seran:

d

X, — '"s~~r (n—1) a

y, — Ynj + atgan1= b-f atga, + atga, -f ... + atgani

n es el numero de nudos entre el eje oy y el considerado
Inclusive.

Sustituyendo en la udltima ecuacion los valores de tgo”,

tg?-., de las ecuaciones (i), se obtiene:
aP
b + 1+2 + 3+ 4 + .. + (n-()
pero X+2—3 (4 — ... ——{(n-1)— N~
luego
, aPn(n-1)

De modo que las coordenadas para el nudo n seran:

X Jy + (h-1)a i

aPn(n-i) \ )

y b+ 2T,

Si sesuprime el parametro tt entre lasecuaciones (3)
para lo cual basta despejarlo en la una ysustituirlo en la

otra, se encuentra finalmente la ecuacidn

aP [/ x* 1
y = b+ 2To V 4
«
P / o i

0 y = b+ 2aT. X 4
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que es de la forma y = C + K Xx'J, ecuacibn que corres-
ponde a una parabala de eje vertical y gue nos prueba, por
lo mismo, que un cable suspendido que soporta varias car-
gas Iguales e equidistantes forma un poligono del cual to-
dos los vertices o nudos pertenecen a una curva parabolica

de eje vertical.
La ecuacion (4) nos permite calcular las coordenadas de

todos los nudos; pero, para ello, es necesario dar a X los
valores correspondientes, aumentando esta variable desde el

valor * |, que corresponde al primer nudo, en cantidades

constantes c¢ iguales a la equidistancia a, para los nudos
sucesivos. De esta manera se determinan las longitudes de
las ordenadas BB', CC'... etc., y asi, por ejemplo, en el
caso de que se guiera proyectar un puente colgante, se pue-
de escoger el ee OX como el tablero del puente y las or-
denadas calculadas como se acaba de indicar seran las
longitudes de los tirantes de los cuales va suspendido el

tablero.

Pero la ecuacion (4) esta dada en funcidon de la tension
T o que corresponde a la parte mas baja del cable. Este va-
lor se encuentra conociendo la flecha f (fig. 5 a), dato que
generalmente se Impone de acuerdo con clertas normas en
cada proyecto.

Por consiguiente, si en la ecuacion (3) hacemos Y = f-f b,
podemos despejar T O:

fiop b o arnin-b

APl g

f1 (

lista serd la tension minima, las de los demas cordones

se encontraran componiendo T o con las cargas P. Asi, de
acuerdo con la figura (5b) tendremos:

y Tr =

T)=y T0- p]

Tg o/ TV -f (2PYy
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y la tension maxima

T, = vy TI,-+ n-P;

0 m .

Las Inclinaciones de los diversos cordones con la ho-
rizontal, se encuentran facilmente por medio de las ecuacio-
nes (1). Entre i1odos los cordones, hay especial interes en
encontrar la inclinacion del udltimo, es decir, del que se apo-
ya tn el punto de suspension, con el objeto de dar la mis-
ma inclinacion al cable por el otro lado de la suspension,
hacia el anclaje, por motivos que indicaremos mas adelante
en un ejemplo.

La longitud de cada corddn se encuentra en funcion

de los angulos a,, a, etc. asi: (fig. 5 a):
Longitud de AB A
‘ a
Longitud de BC _
eos Yi
Longitud de CD = s a. etc.

y por tanto, la longitud total del cable entre los dos puntos
de suspension sera

Los valores de eosa, , eos ... se determinan por
las formulas (2).

s.ounao oaso.— Carga uniforme por unidad de distan-
cia horizontal.

Este caso es el limite del anterior; es decir, si se supone
que la equidistancia a entre los tirantes disminuye indifini-
damente de valor, hasta hacerse infinitamente pequena, los
lados del poligono funicular haciéndose cada vez mas pe-

quenos, se acercan a la curva parabdlica y en el limite se
confunden con ella. Por tanto para determinar la ecuacion

de la curva que forma el cable en este caso limite, podemos
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partir de las ecuaciones ya encentradas,introduciendo en

ellas las modificaciones correspondientes.
Para ello observemos que, siendo constante la luz del

cable en cada caso, si se hace a muy pequefa, el valor de n
rera grande (muchos nudos) y la carga P que corresponde

a cada nudo, serda también muy pequena.
Sea (g la carga por unidad de longitud; entonces,para

repartir uniformemente cada carga P en la distancia a que
le corresponde, tendremos

P= ag

Ademas podemos tomarcomo origen de coordenadas,

el vertice de la curva, de tal manera que b = o.
Si en la ecuacion (4) hacemos

b= oy P —aq, se obtiene
a*Oq i/ x'9 I \ qx9 Iégq

y== 2 T, {3:’ 4 - T,

pero como a es tan peguefo como Se quiera, su cuadrado

resulta dspreciable y el téermino

O
a- (

O ao
la ecuacion queda

y = 2T (e)

>

que es una parabola de eje vertical.
De acuerdo con la fig. () vemos que cuando

3T,
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Por tanto

T 11
f s T.y1°  s8f v/

La formula (7) da el valor de la tension en la parte mas
baja del cabie, es decir, en el vertice de la parabola, en fun-
cion de la carga unitaria, de la luz y de la flecha. Se usa
también en el calculo de cables de puentes colgantes y prin-
cipalmente en el calculo de alambres y lineas de transmision,
para los tramos comprendidos entre cada .dos postes horizon-
tales; desde luego, en estos dos ultimos casos es solo una
formula aproximada ya que en ellos la carga no es cons-
tante a lo largo de la cuerda del cabie y, por lo mismo, la
curva no es exactamente parabolica, sino mas bien una ca-
tenaria, como veremos despues. Con todo hasta valores de
la flecha i1guales a un cuarto de luz, el error es tan pegueno
que se puede despreciar.

Tension en cualquier punto del cable. Para encontrar
la tension del cable en cualquier punto de abscisa X, basta
componer la tension horizontal T ¢ con la carga vertical exis-
tente entre el origen de coordenadas o y el punto de abscisa
X; esta componente vertical tendra por valor gxy la tensidon
del cable valdra entonces

T rj+ (ax)

La tension maxima ocurre en los puntos de suspension, en los

cuales x = % A por tanto

T s /T q2I |

Direccion de la tangente.—La direccion de la tangente
a la curva en cualquier punto, que sera al mismo tiempo la
direccion de la tension en dicho punto, se encuentra deii-

Vando la ecuacion (s), es dicir
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dy SL* (0,

* B=  dx" - t. (V)
En los puntos de suspension la inclinacion de la tangente sera,
1
haciendo Xx = A
tg a» = 27

Si se prolonga la tangente a la curva en el punto de
suspension hasta cortar al eje de las X, tendremos que di-
cha tangente pasara a una distancia del origen (fig. 6)

d— ] — B B1cotg. a,
/ 1 J J 1 ql] v 2t o _ L
2 tga, - 2 sT, A ql — 4

De manera que, en el caso de puentes colgantes, si se
quiere que el cable esté igualmente inclinada a ambos lados

de la suspension, la regla es que la distaneia B ’'C debe ser
la cuarta parte de la luz.

Longitud del cable.—La longitud del cable entre los
puntos de suspension se podria determinar de una manera
exacta, considerando un elemeeto ds de la curva parabodlica,
para emplear el metodo ordinario que indica el calculo In-
tegral; pero de esta manera se obtiene una ecuacion muy

complicada, por lo que sin mayor error aconsejan calcular
la longitud del cable con la formula aproximada

@) >
L =1 + 3r 00

Haciendo una integracion por series, Jorini (construccion

de puentes, pag. 721) encuentra para la longitud del cable
la formula C
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L (l+ 3~ 40 ) (52

siendo z i

En estas formulas / es la distancia entre los puntos de
suspension.

Caso en que los puntos de suspension estan a diferente
nivel.

Hasta aqui hemos supuesto que los puntos de suspen-
sion del cable estan a nivel y, por lo mismo, que el vértice
de la parabola o punto mas bajo esta exactamente en la mi-
tad de la luz. Pero lo mas frecuente es que los postes no
estan a nivel y se necesita adaptar las formulas anteriores
a este caso general.

El cable suspendido esta en equilibrio bajo la accidon de
las fuerzas exteriores y de las reacciones correspondientes.
Si en un punto cualguiera M (fig. 6) se corta el cable y
se la aplica en la direccion de la tangente una fuerza igual
y contraria a la tension que corresponde a este punto, el sis-
tema continta en equilibrio-y la forma de la curva A O M
no se habra modificado.

Supongamos, entonces que A y M sean los nuevos pun-
tos de suspension del cable, sometido a la misma carga uni-
taria g y separados por una distancia horizontal a; sea b
el desnivel entre A y M y utilizamos las notaciones an-
teriores.

Como la tension T, en el punto 0 no ha cambiado, el
nroblema se reduce a determinar en funcidon de los datos ay
0, cual seria el valor de U suponiendo que el cable se
orolongara hasta el punto B, para que los postes queden
al mismo nivel y asi aplicar las formulas anteriores.

Observamos que cuando

[ - 1 e
y= i— b= gql' — b, X— — 2

y si sustituimos estos valores enla ecuacidon(e) se obtiene:
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at _ a \)

8T,, - ! 2 Tn

y despues de simplificar,

1 > + 13
_ 1 Aqg (13)

Con este valor de /, facilmente se deducen los demas
datos. Asi, el veértice de la curva o punto mas bajo, distara
del poste inferior (punto desuspension M de la fig. 6) una
distancia

1
X>r A~ 2

y estara por debajode M con undesnivel de

y —f — b, siendo f :8/‘-|-O

La longitud de la curva A O M, deducida a base de
las formulas (11) o (12) wvaldra:

I = I - nom + noh = t £ ™ (14)

formula en la cual se calcula NOM por medio de las formulas
(11) 6 (12), pero teniendo el cuidado de sustituir / por
2 X, = 2a— 1y fporf— D

f ;

T ercer caso.— Carga uniforme por unidad de longitud
del cable.

Este es el caso verdadero de un cable suspendido entre
dos puntos cuando, supuesto perfectamente flexible, solo esta
sujeto a la accion de su propio peso; pero, por la dificultad
de utilizar las formulas que resultan, se aplica poco prefi-
riendose las formulas deducidas en el caso anterior, las cua-

les no dan error apreciable hasta para valores de la flecha
equivalentes a la cuarta parte de la luz.
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Para este caso es preciso recurrir a las ecuaciones di-
ferenciales.

Sea To latension en el vertice de la curva (fig. 7),
q el peso de la unidad de longitud del cable, S la longitud
de la curva AM; luego S sera el peso de la porcion AM
del cable.

La tension T, tangente al cable en el punto M, debe
hacer equilibrio a la tension horizontal T,

y al peso gS. Por consiguiente
09

tg 1 = .

J - AU

por matematicas se sabe tambien que

dy
* =
luego
dy qS
dx To

La tension horizontal es una constante en cada caso, SiI pone
mos que To a™> 1N ecuacion anterior se hace
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S= ap (15)

Un elemento ds infinitamente pequefio del cable tendra por

valor
ds = [I'dx' ~\r dy"

d

Derivando la ecuacion (15), resulta

ds
dx

y de (16) y (17) sale

dp dx

\I'I +

La primera integracion da

X
log- (p + y i+ p') -4- C
dy
cuando X = 0 0, luego c— o0
dx

y después de despejar p se encuentra:

dy 1 —
dx 2 e — e

Por una segunda integracion se obtiene:

X X

y a a (18)
2 Ve + e

ecuacion gque como se sabe, es de la curva llamada catenaria
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En la ecuacion (18), cuando x = 0, y = a; luego a es
la distancia del véertice de la curva al origen de coordenadas.
Su valor mutiplicado por g, da el valor de la tension hori-
zontal TO. Pero el valor de a es desconocido y para de-
terminarlo se puede seguir un metodo aproximado que de a
en funcion de la luz y de la flecha o de la luz y de la lon-
gitud del cable; en este caso es preciso recurrir a las fun-

ciones hiperbolicas ya que la ecuacion de la catenaria, en
funcion del coseno hiperbodlico es

X
y 5 2 a €0s. h.

Como este caso no tiene vercadera utilidad practica, no ex-
pondré en este ligero estudio el método a seguirse (1).

Aplicaciones.— la. Hacer todo el calculo que corres-
ponde al cable y tirantes para un pequeio puente colgante
de 16.20 m. de luz, con flecha igual a Vs de la luz; el ta-
blero del puente tiene 3 m. de ancho y se calculard para
una carga uniformemente repartida de 400 kg/m’.

Resolucion,—Si dividimos la luz en un numero de es-
pacios impar, para que no guede ningun tirante en el centro
y estar en las condiciones del caso primero, podemos escoger
O espacios y entonces

a = L 2 - L& mtfs*
0
La carga por metro lineal de puente vale 400 X 3 = 1200

kg. y como los cables son dos (uno a cada lado) cada uno
soportara una carga unitaria g = o,6 toneladas; en conse-
cuencia la carga trasmitida por los tirantes en cada nudo,
es de P = 0,6 X Ls — 1,08 toneladas.

El numero de tirantes .en la mitad de la luz es cuatro
(fig, 8); pero como es desconocido el valor de. la ordenada

(1) EI Manual de Foerster, tomo i°. pag. 97, indica un procedi-
miento aproximado para la determinacion de a
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4 41 gte se necesita para determinar ia tension en el punto
mas bajo, con un pequeno error en favor de la seguridad
ciel cable, podemos suponer que el punto de suspension, B

es también un nudo y, por tanto, n= 5. La ordenada BB1
16,2
ya es conocida: BBi1= f-f- b, puesto que f= -*- = 2,025

m. y b es un valor completamente arbitrario, que adoptare-
mos de b= 0,8 m.

La tension horizontal en el cordon 1-1, segun la for-
mula (5) sera

_ 180X 1/08 X 5 X 4
1 A 2. 025" — toneladas

Tambiéen se puede utilizar, para el calculo de TQ la féormula
(7), aunque no es exactamente el caso para el cual se dedujo

dicha féormula, pero el error es pequeno; siendo g = 0,6 to-
neladas.

Too 48 — g 2025 — toNBIadHe —

#
#

La tension maxima, en el corddn 4 -B, sera la resul-

tante de Toy de los pesos trasmitidos al cable por los cua-
tro nudos

T = y9e6“f-(4X 1>08)" = 10,5 toneladas

Los angulos ajr a2 a3y a se deducen de las formulas (1)
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P 1,08
te ai — Te “ TQlg- = °'U3 y al = 6°30,
2P 2,16
g a2 & 4 To' 96 = 0,225 a® = 12040,
3P 3,24
te a3 —~¢3 = lglg = 0337 as = 13°40,
4P 4,32
teai = "Tir = 96 7450 a4 = 240 10
Por tanto
eos a, = 0,993
eos a = 0,976
eos a3= 0,947/
e0s Cafimhal?)
Longitud de los cordones
Longitud de 1— 1= a= 1,80 m
Longy(tud de 1— 2 = desa 1,813 m
Longitud de 2 — 3-= Sosa. - 1,843 m
Longitud de 3—4 = costil - 1,900 m
Longitud de 4 — 8 = c0Sa - 1,973 m

La longitud total entre los puntos de suspension valdra:

L = a-f2a( * - A\-oomo+ -
( COSa, cC0Saz COSas C0OSa4

L8 + 3,60 (ttodd + B OY% 1 0,040 1 0,012

745
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L = 16,86 m.
Longitud de los tirantes.— b = 0,80 m.

Longitud del tirante 1— 11= b= 0,80 m.

Longitud del tirante 2 — 2' = Db -f- atgog = 0,80-J- 1,8 X
X 0,113 = 1,003 m.

Longitud del tirante 3 — 3' — 2 — 2°‘-f- atga2= 1,003 -f-
+ 1,8 X 0,225 - 1,408 m.

Longitud del tirante 4 —4'= 3 — 31-)- atgaz = 1,408 -f-
+ 18 X 0,336 = 2,015 m.

Altura del pilar o torre BB' =4 — 41-f- atga., = 2,015 -f-
+ Ls X 0>45= 2,825 m.

Comprobacion: altura de la torre BB' = f-f-b = 2,025 -|-
+ 0,80 = 2,825 m.

Prolongacion del cable hacia el anclage.—Desde los pun-
tos de suspension A y B, se prolonga el cable hacia el
exterior del puente para sujetarlo en los macizos de mam-
posteria. Si se quiere evitar esfuerzos en las torres en el
sentido longitudinal del puente, debe darse a estas prolonga-
ciones, la misma inclinacion con respecto a la horizontal
que tiene el ultimo corddn 4 — B (en sentido contrario).—
En estas condiciones, si CB (fig. 8) es igual a f, la distan-

cia horizontal CD = -J- aproximadamente, de acuerdo con lo

dicho sobre la tangente al estudiar el caso segundo. La ten-

sion en BD es igual a la del cordon 4-B, es decir, 10,5 to-
neladas.

El doble de esta tension, para tener un factor de segu-
ridad igual a 2 debe ser resistida por el macizo de anclaje,
Investigandose las condiciones de estabilid. d, al deslizamien-
to, al vulcamiento y la presion sobre el suelo.

Compresion producida por los cables en las torres de
suspension.—Si los coidunes 4B y BD tienen la misma in~

cimacio i, la< co rponentes horiz ntales de sus tensiones por
ser iguales y directamente opuestas, se anulan, per lo que,
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como Yya se dijo, los esfuerzos en el sentido longitudinal del
puente se anulan, salvo los que se podrian producir a causa
del rozamiento de los cables en los puntos de suspension.

En cambio, cada torre debe resistir al esfuerzo de com-
presion debido a las componentes verticales de las tensio-
nes de los cordones, que se suman por ser del mismo sentido.

Por la simetria de los cordones 4-B y BD con rela-
cion al eje de la torre, las componentes verticales son igua-

les y el esfuerzo de compresion sera igual al doble de
cualquiera de ellas.

Q= 2X Tmaseos (90 —a,) —2 T sen a4
Q= 2X 10,5X0,409 == 8,59 Toneladas

Conocidos los esfuerzos desarrollados en el cable y tirantes
facilmente se determinan las secciones que ies corresponden,
bastando para ello dividir el esfuerzo total calculado para
el coeficiente de resistencia de trabajo del material empleado.
Cuando no se dispone de cable se lo puede sustituir con
alambres cuya seccion total sea suficiente para resistir a la
tensibn maxima.

Segundo ejemplo—Entre dos postes separados por una
distancia horizontal de 120 m. y que tienen un desnivel de
2 m. se quiere templar un alambre de cobre. Si el esfuerzo
de traccion en el alambre no ha de pasar de 7 kg/mnr, se
desea saber cual deberia ser la flecha minima que deberia
tener el cable, asi como las coordenadas del punto mas ba-
jo y la longitud del cable suspendido entre los dos postes.

Dato: 1 m. de alambre de cobre de 1 m.m." de seccidn

pesSa nueve gramaos.

Resolucion.—Para el caso de cables sometidos a solo
la accion de su propio peso, no hace falta conocer su seccidn
0 su diametro ya que la carga unitaria g (peso de la uni-
dad de longitud del cable), es proporcional a la seccion, es
decir, que los resultados seran los mismos cualquiera que
sea la seccion o el diametro del alambre utilizado.

De acuerdo con la figura (e) y las formulas estudiadas

en el caso segundo, Jos d*tos son:

a= 120 m.] b= 2m.; =9 gramos; T = 7.000 gramos Yy
las incognitas, f 0 y, X, y la longitud L, del alambre.
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Para aplicarla formula (13), se necesita conocer la ten-
sion minima T 0; se podria calcular su valor exacto en fun-

cion de las formulas (8) y (13), estableciendo”™ un sistema
de dos ecuaciones con dos incognitas, pero asi resulta una

ecuacion en | dificil de resolver, por lo que es mas” practico
proceder con uno o0 dos ensayos, poniendo un valor 1 oapro-
Ximado para comprobar luego. Para ello basta fijarse que
To difiere siempre muy poco de T (tensidbn maxima); de
manera que si T = 7 Kg., podemos poner To = 6,9 Kg. En-
tonces

f_ X -'f A?I"I O__ '_;L%%'f‘ Axﬁ(?(X(sq'gOO — >45,55 M.

, 11l gX >45,55"
gsTo — 8 X 6.900 m°

luego yi = f—Db = 1,45 m.

es decir que el vertice de la curva estd 1,45 m. bajo el ni-

vel del punto de suspension del poste mas bajo y a una
distancia de este poste de

N — X — =120 — 72,77 = 47,23 m.

Para la longitud del alambre, con la misma notacion de
la figura (s&), tendremos:

8 12 8V 3452
L = 1+ TT-= =>4555+ 1 X 1S S = 145-77 “ o

NOM = 2X, -I- 3 X Xj = 9446 + 3 X94,46

Por tanto, la longitud del alambre es de

T L+ NOM 145,55 4- 94,52
U =« —-—- A — {y-=-— 120,14 m.
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Comprobacion del valor de To adoptado:

Tmax ==\J To2 'j

—]
o
I

To = y'"' T — ~°>009X145,5]- 6>97 Kg_

Como se ve, la tension para estos casos es casi constante
y sin peligro de que se produzca un esfuerzo muy grande,
se puede poner para To el valor de la tension maxima ad-
misible. i

Observacion.—En los lugares donde son frecuentes los
vientos, se debe disminuir prudencialmente el coeficiente de
trabajo del material a causa del aumento de tension produ-
cida por el viento; tambien es facil hacer el calculo tomando
en cuenta la presion del viento que se le puede suponer de
150 a 200 Kg/nT y de direccion horizontal. Entonces se
puede buscar la resultante por metro longitudinal dei peso
del alambre y de la presion del viento; estas dos fuerzas
son perpendiculares entre si y su resultante serd la carga
unitaria ( para el empleo de las formulas.



