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Cuando se estudia la estática de los cuerpos sólidos, se 
los considera a éstos como formados por una agrupación de 
puntos materiales y hay lugar, entonces, a clasificar a estas 
agrupaciones llamadas sistemas en dos categorías:

a).—Sí se supone que las distancias mutuas entre los 
diversos puntos materiales del sistema permanecen invariables 
bajo la acción de las fuerzas exteriores que sobre ellos actúan, 
el cuerpo sólido se llama invariable o indeformable y su es­
tudio se completa admitiendo después pequeñas deformaciones, 
llamadas deformaciones elásticas:

b).— Cuando la distancia entre los puntos materiales son 
variables por la naturaleza misma del cuerpo sólido que cons­
tituyen y a causa de las fuerzas exteriores, el sistema se 
llama deformable.

A esta segunda categoría pertenecen los cables, cadenas, 
alambres, cuerdas, etc.; a estos sistemas, cuando están so­
metidos a la acción de las fuerzas exteriores sin que pro­
duzcan movimiento, se les aplica también las ecuaciones ge­
nerales del equilibrio estático; pero, para completar su estudio, 
es preciso determinar la forma o figura que adopta el cuerpo 
deformable, cuando queda en equilibrio.

En el presente estudio quiero indicar algunas nociones 
sobre estos sistemas deformables y sus aplicaciones más 
interesantes.

Sistemas deformables.—Desde luego, fácil es comprender 
que, por la naturaleza misma de los sistemas deiormables, 
no pueden en ninguna forma trabajar a compresión; en 
cambio, son esencialmente aptos para resistir a los esfuerzos
de extensión.

Sabido es que para que dos fuerzas estén en equilibrio, 
dichas fuerzas deben ser iguales y directamente opuestas. 
Por consiguiente, sí se fija por un extremo un cable o una
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cuerda flexible y se le aplica por el otro extremo una fuerza 
de tracción de P kg., la cuerda se pone tensa; cualquier 
sección a lo largo de toda la longitud comprendida entre el 
extremo fijo y el punto de aplicación de la fuerza, está re­
si. 'cndo a la fuerza de tracción P y en el extremo fijo apa­
re :e una fuerza de reacción que, de acuerdo con uno de los 
principios fundamentales de la Mecánica y, para que el sis­
tema quede en equilibrio, debe ser igual a P y directamente 
opuesta. Es decir que la reacción sería de— Pkg.

Ahora bien, supongamos que en esta cuerda tensa bajo 
la acción de P, por medio de un anillo y otra cuerda, ha­
cemos actuar una segunda fuerza P", cuya dirección puede 
ser cualquiera. El anillo que trasmite la fuerza F, resbala 
a lo largo de la cuerda A B  hasta un punto C (fíg. 1 ), en 
el cual se forma un ángulo A C B  y el sistema queda en 
equilibrio.

/ j ? .  Z

'J -  '

Dicho equilibrio se hace entre la fuerzas P, F  y R  con­
currentes en el punto C. Para que estas tres fuerzas concu­
rrentes estén en equilibrio, se necesitan dos condiciones:

Ia. Que las tres fuerzas estén en un solo plano; y

2 a. Que cualquiera de ellas sea igual y directamente 
opuesta a la resultante geométrica de las otras dos.

Por tanto, P, F  y R  están en un solo plano y para 
encontrar el valor de la tensión R, que es también la reac-
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ción del punto fijo B, basta hacer la suma gráfica F  +  P  =  R  
formando cualquiera de los triángulos ABC o ADC (fíg. 2).

En la misma forma se pueden considerar varías fuerzas 
Mr F.,r P;¡• • • P Q, actuando en diversos puntos del cordón A F  
(fíg. 3) y cuando todo el sistema está en equilibrio bajo la 
acción de las fuerzas exteriores, el cordón presenta la forma 
poligonal A BC D E F  y a esta figura se la llama polígono 
funicular (polígono de los cordones)*

a

Los puntos B, C, D, E, se llaman nudos y en cada uno 
de ellos, lo mismo que en la fíg. 1 , tres fuerzas están en 
equilibrio. Así, por ejemplo, en B se equilibran las tensio­
nes P, T ,  y T ¿; en C, P.2, T 2 y T.j, etc.

S í  se hace uno junto a otro los diversos triángulos de 
fuerzas correspondientes a los nudos sucesivos (fíg. 4), se 
obtiene en conjunto un polígono de fuerzas idéntico al diná­
mico que se considera en los estudios de la Estática Gráfica.

Inversamente, sí a base del dinámico construido con las 
fuerzas P,, P ,,  P „  P„ y el polo O, se dibuja un polígono 
funicular sobre las direcciones de estas mismas fuerzas, se 
obtiene la forma como quedaría un cable en equilibrio bajo
la acción de dichas fuerzas (fíg. 3).

De lo dicho se desprende que las construcciones de los
polígonos funiculares, se aplican a los sistemas deformables, 
con la única diferencia de que, en grafostática eí polígono 
funicular es una mera construcción geométrica, mientras que 
en el estudio de los sistemas sólidos flexibles de que vení-



A N A L E S  D E  LA
. . . - r  > v '.-'v ' í 'V-. r -  *T -'*vN r^erv» ^ ' '  < *

%

mos tratando, eí polígono funicular está formado por cordo­
nes materiales y da la verdadera forma del cable (supuesto 
éste perfectamente flexible) cuando está en equilibrio.

Partiendo de las sencillas consideraciones que preceden 
y sin necesidad de recurrir a análisis matemáticos complica­
dos, se pueden encontrar las ecuaciones de equilibrio para 
cables suspendidos, ya sea bajo la influencia de cargas con­
centradas o por la sola acción de su propio peso.

En el estudio de los sistemas deformables los casos de 
mayor aplicación práctica son aquellos en que todas las 
fuerzas exteriores están situadas en un solo plano y son pa­
ralelas entre sí. Entonces el polígono funicular está situado 
ei eí plano de las fuerzas y éstas son, generalmente, pesos 
suspendidos del cable por medio de tirantes.

Consideremos los tres casos siguientes de cargas:

Io. El cable soporta cargas verticales concentradas, to­
das de la misma magnitud y equidistantes entre si. Este caso 
tiene íimedíata aplicación en el estudio de puentes colgantes.

2 o. El cable soporta una carga uniforme por unidad de 
distancia horizontal, caso que se aplica al estudio de cables 
sometidos a la acción de su propio peso, cuando la flecha 
es pequeña con relación a la luz; las fórmulas que se deducen 
de este caso se aplican también al estudio de puentes col­
gantes.

3o. Carga uniforme por unidad de longitud del cable, caso 
que tiene aplicación para cables suspendidos cuando la fle­
cha es grande con relación a la luz.

P r i m e r  c a s o . — Fuerzas verticales, equidistantes y de la 
misma magnitud.

En este caso, sí los puntos de suspensión están al mis­
mo nivel, el cable será simétrico con relación a un eje ver­
tical que pasa por la mitad de la luz. Basta considerar la 
mitad del cable.

Por facilidad, dispongamos las cargas de tal manera que
éstas sean en número par; en esta forma no habrá ninguna
fuerza en la mitad del cable y la parte más baja de éste se­
rá horizontal.

Sea x  o y un sistema de coordenadas rectangulares;
oy es eí eje vertical de simetría y la mitad de la derecha
del cable es A B C D E F G .
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En los nudos B, C, F . . .  están aplicadas, por medio de 
tirantes, cargas iguales a P.

Sea  a la distancia entre los tirantes y ~  y ¿ la s  coor­

denadas del primer nudo B.
Llamemos, y..) t ..........a los ángulos que forman los

cordones BC, CD,  con la horizontal; T „  a la tensión del
cable en el cordón horizontal AB; T , ,  T   T„ a las ten­
siones de los cordones BC, CD, etc.

De acuerdo con las figuras 5a y 5b, estudiemos el 
equilibrio en los diferentes nudos.

y  5  b

En el nudo B, concurren las fuerzas P, T 0 y T „  y 
para que estén en equilibrio deben formar un triángulo, sí 
se las suma vectorialmente como se índica en oab  (fíg. 5b). 
Por ser T 0 horizontal y P vertical, el ángulo oab es recto 
y se puede escribir:

p
tg a, =  «=r y también T 0 =  T,*cos a,

I o

En el nudo C, las fuerzas en equilibrio son P, T 1 y T 2; 
pero como T ,  es la suma vectorial de P y T,„ es decir

í ,  P +  íc,

\
#
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También podemos decir que equilibrio se hace entre 
2 P, T 0 y T , ,  formando el triángulo oac (fíg. 5b) y por tan­
to, resulta:

tg a.
2 P
T „

y To =  To eos a.,

Estudiando el equilibrio en igual forma para todos los 
nudos, se obtienen ecuaciones análogas a las ya encontradas 
y que, en resumen, nos dan los dos siguientes sistemas:

tg a

tg a.

tg

tg a,

P
TJ- o

2 P
T °

3P
To

nP
To

(O

T „  =  T ,  eos a,
1

T „  =  To eos a.,

T  — T-L o ----- A Mt i
„ eos a..
• i  «»

To — T „  eos a»

(2)

Como ya indicamos, las coordenadas del nudo B son

x 2 b

Las de los demás nudos, de 
serán:

acuerdo con la figura 4a,

Coordenadas de C
\  X.,

> y.

2 +  a

b a tg a

\
Coordenadas de D

1 y-/  «I

; 2  + 2 a

y2 +  atg a =  b +  atga, +  alga.
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y en general, las coordenadas de un nudo cualquiera que 
ocupe un lugar n serán:

a . . 
x„ — ' "-s ~ ~r  (n — 1) a

y,. — Yn-j +  a tg an- 1 =  b - f  atg a, +  atga, -f .......  +  atgan- 1

n es el número de nudos entre el eje oy y el considerado 
inclusive.

Sustituyendo en la última ecuación los valores de tgo^, 
tg?-., de las ecuaciones ( í) ,  se obtiene:

aP
b + 1 + 2  +  3 +  4 + .........+  (n - ( )

pero X —f- 2 — 3 —(— 4 — ....... —(— ( n - 1 ) — ^ ~

luego
, a P n ( n - l )

y =  b - r  — J t T ~ '

De modo que las coordenadas para el nudo n serán:

x  J y  +  (n- 1 ) a i
(3)

a P n ( n - í )  \
y _  b +  2 T „

Si se suprime el parámetro ti entre las ecuaciones (3)
para lo cual basta despejarlo en la una y sustituirlo en la
otra, se encuentra finalmente la ecuación

a P / x “ 1
y  =  b +  2 T o  V  4  I  I

P / o _ i
ó y =  b +  2 a T . x  4

«
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que es de la forma y =  C +  K  x'J, ecuación que corres­
ponde a una parábala de eje vertical y que nos prueba, por 
lo mismo, que un cable suspendido que soporta varías car­
gas iguales e equidistantes forma un polígono del cual to­
dos los vértices o nudos pertenecen a una curva parabólica
de eje vertical.

La ecuación (4) nos permite calcular las coordenadas de 
todos los nudos; pero, para ello, es necesario dar a x los 
valores correspondientes, aumentando esta variable desde el

valor *  , que corresponde al primer nudo, en cantidades

constantes c iguales a la equidistancia a, para los nudos 
sucesivos. De esta manera se determinan las longitudes de
las ordenadas B B ',  C C ' .........etc., y así, por ejemplo, en el
caso de que se quiera proyectar un puente colgante, se pue­
de escoger el eje O X  como el tablero del puente y las or­
denadas calculadas como se acaba de indicar serán las 
longitudes de los tirantes de los cuales va suspendido el 
tablero.

Pero la ecuación (4) está dada en función de la tensión 
T 0 que corresponde a la parte más baja del cable. Este va­
lor se encuentra conociendo la flecha f (fíg. 5 a ) ,  dato que 
generalmente se impone de acuerdo con ciertas normas en 
cada proyecto.

Por consiguiente, si en la ecuación (3) hacemos Y  =  f -f b, 
podemos despejar T 0:

, a P n ( n - l )
f i- b b .

„  a P n ( n - J )
y T r. =  2V{.... (5 )

f 1 (

iista será la tensión mínima, las de los demás cordones 
se encontrarán componiendo T 0 con las cargas P. Así, de 
acuerdo con la figura (5b) tendremos:

T j  =  y  T 0- -j~ p |

T g •]/ T V  - f  ( 2 P y
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y la tensión máxima

T „  =  y  T„- +  n- P ;
0 m •

Las inclinaciones de los diversos cordones con la ho­
rizontal, se encuentran fácilmente por medio de las ecuacio­
nes ( 1 ). Entre iodos los cordones, hay especial ínteres en 
encontrar la inclinación del último, es decir, del que se apo­
ya tn el punto de suspensión, con el objeto de dar la mis­
ma inclinación al cable por el otro lado de la suspensión, 
hacía el anclaje, por motivos que indicaremos más adelante 
en un ejemplo.

La longitud de cada cordón se encuentra en función 
de los ángulos a , ,  a ,  etc. así: (fig. 5 a):

Longitud de A B  — —^—

Longitud de BC 

Longitud de CD =

y por tanto, la longitud total del cable entre los dos puntos 
de suspensión será

Los valores de eos a, , eos ........ se determinan por
las fórmulas (2 ).

*

S e g u n d o  c a s o . — Carga uniforme por unidad de distan­
cia horizontal.

Este caso es el limíte del anterior; es decir, si se supone 
que la equidistancia a entre los tirantes disminuye indifiní- 
damente de valor, hasta hacerse infinitamente pequeña, los 
lados del polígono funicular haciéndose cada vez más pe­
queños, se acercan a la curva parabólica y en el límite se 
confunden con ella. Por tanto para determinar la ecuación 
de la curva que forma el cable en este caso limíte, podemos

a
eos y.i

eos a., etc.
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partir de las ecuaciones ya encentradas, introduciendo en
ellas las modificaciones correspondientes.

Para ello observemos que, siendo constante la luz del 
cable en cada caso, sí se hace a muy pequeña, el valor de n 
rerá grande (muchos nudos) y la carga P  que corresponde 
a cada nudo, será también muy pequeña.

Sea q la carga por unidad de longitud; entonces, para
repartir uniformemente cada carga P en la distancia a que
le corresponde, tendremos

P =  a q

Además podemos tomar como origen de coordenadas,
el vértice de la curva, de tal manera que b =  o.

Sí en la ecuación (4) hacemos

b =  o y P — a q, se obtiene
O / 9 * \ 9 I | 9a* q i x" l \ q x ‘ a '  q

y== 2 T „  {a'-’ 4 =  T „  ' 3 T „

pero como a es tan pequeño como se quiera, su cuadrado 
resulta dspreciable y el término

Oa- q
O a o

la ecuación queda

y =  2 T  (6)
>

que es una parábola de eje vertical.
De acuerdo con la fíg. (6) vemos que cuando

Ft_j. é
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Por tanto

f

x
1

2

< i j '  T

8 T ..y 1

y

O

f

‘í 1 ^
8 f v/)

La fórmula (7) da el valor de la tensión en la parte más 
baja del cabie, es decir, en el vértice de la parabola, en fun­
ción de la carga unitaria, de la luz y de la flecha. Se usa 
también en el cálculo de cables de puentes colgantes y prin­
cipalmente en el cálculo de alambres y lineas de transmisión, 
para los tramos comprendidos entre cada .dos postes horizon­
tales; desde luego, en estos dos últimos casos es solo una 
fórmula aproximada ya que en ellos la carga no es cons­
tante a lo largo de la cuerda del cabie y, por lo mismo, la 
curva no es exactamente parabólica, sino mas bien una ca­
tenaria, como veremos después. Con todo hasta valores de 
la flecha iguales a un cuarto de luz, el error es tan pequeño 
que se puede despreciar.

Tensión en cualquier punto del cable. Para encontrar 
la tensión del cable en cualquier punto de abscisa x, basta 
componer la tensión horizontal T (1 con la carga vertical exis­
tente entre el origen de coordenadas o y el punto de abscisa 
x; esta componente vertical tendrá por valor qx y la tensión 
del cable valdrá entonces

T I r j  +  (qx)
o

La tensión máxima ocurre en los puntos de suspensión, en los

1
cuales x =  ±   ̂ por tanto

T mas // T q l
2

\ - qi
i

/ l
4f

+  1 (8)

(Dirección de la tangente.—La dirección de la tangente 
a la curva en cualquier punto, que será al mismo tiempo la 
dirección de la tensión en dicho punto, se encuentra deii-
Vando la ecuación (6), es dícír
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•  •  A  ^
^  «. • -  *• r '

d y _  SL* (•o',
‘ * B =  d x "  -  t . (V)

En los puntos de suspensión la inclinación de la tangente será,

1
haciendo x =  ^

tg a» =  2^p

Sí se prolonga la tangente a la curva en el punto de 
suspensión hasta cortar al eje de las X ,  tendremos que di­
cha tangente pasará a una distancia del origen (fíg. 6)

d — j  — B B 1 cotg. a„

/  1 J  _  1 q l J v  2 t 0 _  L
2 tg a„ “  2 8 T „  A  q l  — 4

De manera que, en el caso de puentes colgantes, sí se 
quiere que el cable esté igualmente inclinada a ambos lados 
de la suspensión, la regla es que la dístaneía B ’ C debe ser 
la cuarta parte de la luz.

Longitud del cable.—La longitud del cable entre los 
puntos de suspensión se podría determinar de una manera 
exacta, considerando un elemeeto ds de la curva parabólica, 
para emplear el método ordinario que indica el cálculo in­
tegral; pero de esta manera se obtiene una ecuación muy 
complicada, por lo que sin mayor error aconsejan calcular 
la longitud del cable con la fórmula aproximada

O £>
L = i +  3 r  o o

Haciendo una integración por seríes, Joríní (construcción
de puentes, pág. 721) encuentra para la longitud del cable 
la fórmula fc
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L = 1 ( l +  J  ~  40 ) (>2)

siendo z 4f
1

En estás fórmulas / es la distancia entre los puntos de 
suspensión.

Caso en que los puntos de suspensión están a diferente 
nivel.

• * •  . • . ,  ,  , .

Hasta aquí hemos supuesto que los puntos de suspen­
sión del cable están a nivel y, por lo mismo, que el vértice 
de la parábola o punto más bajo está exactamente en la mi­
tad de la luz. Pero lo más frecuente es que los postes no 
están a nivel y se necesita adaptar las fórmulas anteriores 
a este caso general.

El cable suspendido está en equilibrio bajo la acción de 
las fuerzas exteriores y de las reacciones correspondientes. 
Sí en un punto cualquiera M (fíg. 6) se corta el cable y 
se la aplica en la dirección de la tangente una fuerza igual 
y contraria a la tensión que corresponde a este punto, el sis­
tema continúa en equilibrio y la forma de la curva A O M 
no se habrá modificado.

Supongamos, entonces que A y M sean los nuevos pun­
tos de suspensión del cable, sometido a la misma carga uni­
taria q y separados por una distancia horizontal a ;  sea b 
el desnivel entre A y M y utilizamos las notaciones an­
teriores.

Como la tensión T„ en el punto o no ha cambiado, el
problema se reduce a determinar en función de los datos a  y

b, cual sería el valor de U suponiendo que el cable se 
prolongara hasta el punto B, para que los postes queden 
al mismo nivel y así aplicar las fórmulas anteriores.
Observamos que cuando

q í ‘  - 1 •
y =  í — b =  gT  — b , X —  — 2

y si sustituimos estos valores en la ecuación (6) se obtiene:
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O
q 1; __ , _  q \ )
8T „  -  "  2  T „

y después de simplificar,

1 _  >. +  ( 1 3)
1 A q

Con este valor de /, fácilmente se deducen los demás 
datos. Así, el vértice de la curva o punto más bajo, distará 
del poste inferior (punto de suspensión M de la fig. 6 ) una
distancia

1

x > r ; A ~  2

y estará por debajo de M con un desnivel de

y — f — b, siendo f =  ^8 To
La longitud de la curva A O M, deducida a base de 

las fórmulas ( 1 1 ) o ( 1 2 ) valdrá:

l  =  l -  n o m + n o h  =  t ± ™  ( l 4 )

fórmula en la cual se calcula N O M  por medio de las fórmulas 
(11) ó (12), pero teniendo el cuidado de sustituir / por 
2 x, =  2 a — 1 y f por f — b

f  # •

T e r c e r  c a s o .— Carga uniforme por unidad de longitud 
del cable.

Este es el caso verdadero de un cable suspendido entre 
dos puntos cuando, supuesto perfectamente flexible, sólo está 
sujeto a la acción de su propio peso; pero, por la dificultad 
de utilizar las fórmulas que resultan, se aplica poco prefi­
riéndose las fórmulas deducidas en el caso anterior, las cua­
les no dan error aprecíable hasta para valores de la flecha 
equivalentes a la cuarta parte de la luz.
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Para este caso es preciso recurrir a las ecuaciones di­
ferencíales.

Sea  T 0 la tensión en el vértice de la curva (fig. 7), 
q el peso de la unidad de longitud del cable, S  la longitud 
de la curva AM; luego qS será el peso de la porción AM 
del cable.

L a  tensión T ,  tangente al cable en el punto M, debe 
hacer equilibrio a la tensión horizontal T „

y al peso qS. Por consiguiente

qS
tg :i =

A Ü

por matemáticas se sabe también que

dy
*  * =  s r

luego
dy qS
dx To

L a  tensión horizontal es una constante en cada caso, si pone 
mos que To q^> 1  ̂ ecuación anterior se hace

i
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S  =_ a p (15)

Un elemento ds infinitamente pequeño del cable tendrá por 
valor

ds =  l' dx' ~\r dy"

d s 
y dx ' + (  &

V i +  p ( 16)

Derivando la ecuación (15), resulta

ds
dx

y de (16) y (17) sale

dp

\! i +

dx

La primera integración da

log- ( p  +  y  i +  p' )
X

-4- c

cuando x =  o
dy
dx o ; luego c — o

y después de despejar p se encuentra:

dy
dx

1

2
X  __  X

a a
e — e

Por una segunda integración se obtiene:

y
X

a

2 Ve +

X

a (18)
e

ecuación que como se sabe, es de la curva llamada catenaria
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En la ecuación (18), cuando x  =  o, y =  a ;  luego a es 
la distancia del vértice de la curva al origen de coordenadas. 
Su  valor mutíplícado por q, da el valor de la tensión hori­
zontal T 0. Pero el valor de a es desconocido y para de­
terminarlo se puede seguir un método aproximado que de a 
en función de la luz y de la flecha o de la luz y de la lon­
gitud del cable; en este caso es preciso recurrir a las fun­
ciones hiperbólicas ya que la ecuación de la catenaria, en 
función del coseno hiperbólico es

y

Como este caso no tiene vercadera utilidad práctica, no ex­
pondré en este ligero estudio el método a seguirse ( 1).

A p l i c a c i o n e s . —  I a. Hacer todo el cálculo que corres­
ponde al cable y tirantes para un pequeño puente colgante 
de 16.20 m. de luz, con flecha igual a V8 de la luz; el ta­
blero del puente tiene 3 m. de ancho y se calculará para 
una carga uniformemente repartida de 400 kg/m'.

Resolución,— Sí dividimos la luz en un número de es­
pacios impar, para que no quede ningún tirante en el centro 
y estar en las condiciones del caso primero, podemos escoger 
9 espacios y entonces

1 16 '2  t a fa =  ^—  =  *»8 mts*
o

L a  carga por metro lineal de puente vale 400 X  3 =  1200  
kg. y como los cables son dos (uno a cada lado) cada uno 
soportará una carga unitaria q =  0,6 toneladas; en conse­
cuencia la carga trasmitida por los tirantes en cada nudo, 
es de P  =  0,6 X  L 8 — 1,08 toneladas.

El número de tirantes .en la mitad de la luz es cuatro 
(fíg, 8); pero como es desconocido el valor de. la ordenada

\

(1) El Manual de Foerster, tomo í°. pág. 97, índica un procedi­
miento aproximado para la determinación de a

2

X
a a eos. h.
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4 4 1 qte se necesita para determinar ía tensión en el punto 
mas bajo, con un pequeño error en favor de la seguridad 
cíel cable, podemos suponer que el punto de suspensión, B 
es también un nudo y, por tanto, n =  5. L a  ordenada B B 1

16,2
ya es conocida: B B 1 =  f -f- b , puesto que f =  - ̂  -  =  2,0 25

m. y b es un valor completamente arbitrario, que adoptare­
mos de b =  0,8 m.

La tensión horizontal en el cordón 1-1,  según la fór­
mula (5) será

_  1,80 X  1/08 X  5 X  4
1 q ^ 2 025" — toneladas

También se puede utilizar, para el cálculo de T 0, la fórmula 
(7), aunque no es exactamente el caso para el cual se dedujo 
dicha fórmula, pero el error es pequeño; siendo q =  0,6 to­
neladas.

T  -  - 1 1 1  -  MX 16,22 _o g £ — g 2 025 — toneladas
• # •

#

L a  tensión máxima, en el cordón 4 -B ,  sera la resul­
tante de T 0 y de los pesos trasmitidos al cable por los cua­
tro nudos

T  =  y  9,6 “ -f- (4 X  1 >08)“ =  10,5 toneladas

Los ángulos ajr a2, a3 y cc4 se deducen de las fórmulas (1)
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t e  a i —  T o  “  T 7 -  =  ° ’ U 3  y a! =  6 ° 3 0 ,
p 1,08

-  Te 9,6 ~

2 P 2,16
“ * T o ' -  9,6 ~

3 P 3,24
“  To ~  9,6 “

4 P 4,32

g  a 2 =  =  0 , 2 2 5  a® =  12o 4 0 ,

te a3 — ~ t 7  =  I T  =  0 3 3 7  a3 =  13°40,

te ai =  " T i r  =  ~ 9 ~ 6 ~  =  ^450  a4 =  24o 10

Por tanto
eos a, =  0,993 
eos a> =  0,976 
eos a3 =  0,947 
eos =  0,912

Longitud de los cordones

Longitud de 1 — 1 =  a =  1,80 m

Longitud de 1 — 2 =  -----  =  1,813 m& cesa,

Longitud de 2 — 3 - =  — — == 1,843 mcosa.

Longitud de 3 — 4 =   — =  1,900 mcostil

Longitud de 4 — 8 =   —- =  1,973 meos 0-4

La longitud total entre los puntos de suspensión valdrá: 

L  =  a - f  2 a (  * - -\------ — +  -- +cosa, cosa2 cosas cosa4

1,8» +  3,60 (tt- W  +  n on¿0 , 9 9 3  r 0 , 9 0 6  1 0 , 9 4 0  1 0 , 9 1 2
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(

Longitud de los tirantes.— b =  0,80 m.

Longitud del tirante 1 — 11 =  b =  0,80 m.

Longitud del tirante 2 — 2' =  b -f- atgoq =  0,80 -J- 1,8 X
X 0,113 =  1,003 m.

Longitud del tirante 3 — 3' — 2 — 2 ‘ -f- atga2 =  1,003 -f-
+  1,8 X 0,225 -  1,408 m.

Longitud del tirante 4 — 4 ' =  3 — 3 1-)- atga3 =  1,408 -f-
+  1,8 X  0,336 =  2,015 m.

Altura del pilar o torre B B '  = 4  — 4-1 -f- atga., =  2,015 -f-
+  L 8 X  0>45 =  2,825 m.

Comprobación: altura de la torre B B '  =  f -f- b =  2,025 -|-
+  0,80 =  2,825 m.

Prolongación del cable hacía el anclage.— Desde los pun­
tos de suspensión A y B ,  se prolonga el cable hacía el 
exterior del puente para sujetarlo en los macizos de mam- 
postería. Sí se quiere evitar esfuerzos en las torres en el 
sentido longitudinal del puente, debe darse a estas prolonga­
ciones, la misma inclinación con respecto a la horizontal 
que tiene el último cordón 4 — B (en sentido contrarío).— 
En estas condiciones, sí C B  (fíg. 8) es igual a f, la distan­

cia horizontal CD =  -j- aproximadamente, de acuerdo con lo

dicho sobre la tangente al estudiar el caso segundo. L a  ten­
sión en BD es igual a la del cordón 4 - B ,  es decir, 10,5 to­
neladas.

El doble de esta tensión, para tener un factor de segu­
ridad igual a 2 debe ser resistida por el macizo de anclaje, 
investigándose las condiciones de estabilíd. d, al deslizamien­
to, al vulcamíento y la presión sobre el suelo.

Compresión producida por los cables en las torres de 
suspensión.— Sí los coidunes 4B y BD tienen la misma ín~ 
cimacio í, la< co r ponentes horíz ntales de sus tensiones por 
ser iguales y directamente opuestas, se anulan, per lo que,

L  =  16,86 m.
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como ya se dijo, los esfuerzos en el sentido longitudinal del 
puente se anulan, salvo los que se podrían producir a causa 
del rozamiento de los cables en los puntos de suspensión.

En cambio, cada torre debe resistir al esfuerzo de com­
presión debido a las componentes verticales de las tensio­
nes de los cordones, que se suman por ser del mismo sentido.

Por la simetría de los cordones 4 - B  y BD con rela­
ción al eje de la torre, las componentes verticales son igua­
les y el esfuerzo de compresión será igual al doble de 
cualquiera de ellas.

Q =  2 X  Tmas eos (90 — a,) — 2 T  sen a4

Q =  2 X  1 0 ,5 X 0 ,4 0 9  == 8,59 Toneladas

Conocidos los esfuerzos desarrollados en el cable y tirantes 
fácilmente se determinan las secciones que íes corresponden, 
bastando para ello dividir el esfuerzo total calculado para 
el coeficiente de resistencia de trabajo del material empleado. 
Cuando no se dispone de cable se lo puede sustituir con 
alambres cuya sección total sea suficiente para resistir a la 
tensión máxima.

Segundo ejemplo— Entre dos postes separados por una 
distancia horizontal de 120  m. y que tienen un desnivel de 
2 m. se quiere templar un alambre de cobre. Sí el esfuerzo 
de tracción en el alambre no ha de pasar de 7 kg/mnr, se 
desea saber cual debería ser la flecha mínima que debería 
tener el cable, así como las coordenadas del punto más ba­
jo y la longitud del cable suspendido entre los dos postes.

Dato: 1 m. de alambre de cobre de 1 m.m." de sección 
pesa nueve gramos.

Resolución.— Para el caso de cables sometidos a solo 
la acción de su propio peso, no hace falta conocer su sección 
o su diámetro ya que la carga unitaria q (peso de la uni­
dad de longitud del cable), es proporcional a la sección, es 
decir, que los resultados serán los mismos cualquiera que 
sea la sección o el diámetro del alambre utilizado.

De acuerdo con la figura (6) y las fórmulas estudiadas 
en el caso segundo, Jos d*tos son:

a  =  120  m.j b =  2 m . ; q = '  9 gramos; T  =  7.000 gramos y 
las incógnitas, f  ó y, x, y la longitud L, del alambre.
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Para aplicarla  fórmula (13), se necesita conocer la ten­
sión mínima T 0; se podría calcular su valor exacto en fun­
ción de las fórmulas (8) y (13), estableciendo^ un sistema 
de dos ecuaciones con dos incógnitas, pero así resulta una 
ecuación en l difícil de resolver, por lo que es más^ práctico 
proceder con uno o dos ensayos, poniendo un valor i o apro­
ximado para comprobar luego. Para ello basta fijarse que 
To difiere siempre muy poco de T  (tensión máxima); de 
manera que sí T  =  7 K g .,  podemos poner To =  6,9 K g .  En­
tonces

t - , A l I o _  ton i ^ X  2  X  6.900 _
l —  X - f  ?  ^  _  120 T  120 X q  >4 5 , 5 5  m.

, i í l  _  q X  >45,55' _
8To — 8 X  6.900 m ‘

luego yi =  f — b =  í,45 m.

es decir que el vértice de la curva está 1,45 m. bajo el ni­
vel del punto de suspensión del poste más bajo y a una 
distancia de este poste de

Xi — X — =  120 — 72,77 =  47,23 m.

Para la longitud del alambre, con la misma notación de 
la figura ( 6), tendremos:

8 f'2 8 V  3 4 52
L  =  i +  T T -  =  >4 5 -5 5  +  1 X 1 S s  =  l 4 5 -7 7  “ •

N O M  =  2 x, -i- 3 X  x¡ =  94,46 +  3 X 9 4 , 4 6

Por tanto, la longitud del alambre es de

T _  L  +  N O M  145,55 4- 94,52 
U  —« ------ ^---------------  y---— 120,14 m.
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Comprobación del valor de To adoptado: 

T m á x  = = \ J  T o 2 'j ; T o  =

T o  =  y '  T  —  ^ ° > 0 0 9 X l 4 5 , 5 j -  _  6>97 K g _

Como se ve, la tensión para estos casos es casi constante 
y sin peligro de que se produzca un esfuerzo muy grande, 
se puede poner para T o  el valor de la tensión máxima ad­
misible.

i
Observación.— En los lugares donde son frecuentes los 

vientos, se debe disminuir prudencíalmente el coeficiente de 
trabajo del material a causa del aumento de tensión produ­
cida por el viento; también es fácil hacer el cálculo tomando 
en cuenta la presión del viento que se le puede suponer de 
150 a 200 Kg/nT  y de dirección horizontal. Entonces se 
puede buscar la resultante por metro longitudinal deí peso 
del alambre y de la presión del viento; estas dos fuerzas 
son perpendiculares entre sí y su resultante será la carga 
unitaria q para el empleo de las fórmulas.

7 i (J


