Phytoliths of Amazonian grasses: diversity and applications

Autores/as

  • Gaspar Morcote-Ríos Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia.
  • Diego Giraldo-Cañas Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia. https://orcid.org/0000-0003-0212-7489
  • Lauren Raz Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia.

Palabras clave:

Amazonian archaeology, Amazonian paleoecology, Neotropical grasses, Phytolith morphotypes

Resumen

In the Poaceae, silica accumulates in idioblast cells in leaves and other organs, forming bodies called “grass silica short cell phytoliths” (GSSCP). Epidermal cells and hairs can also accumulate silica and are considered phytoliths as well. The GSSCPs are particularly well studied and can be diagnostic at different taxonomic levels, including subfamily. This, and the fact that phytoliths can persist in soils for millions of years, make them useful proxies to characterize plant assemblages in paleoecological and archaeological studies. Over the past decade we have been developing phytolith reference collections of Amazonian taxa to aid in the identification of ancient plant remains from this region. To create a representative Amazonian grass collection, we extracted phytoliths from 150 species (88% of Colombian Amazonian grasses) in 59 genera and seven subfamilies. We identified 12 broad morphotype categories with a total of 54 variants, partitioned into two datasets: GSSCP and other silicified epidermal structures; UPGMA analyses were conducted to test for groupings at subfamily level in the separate and combined datasets. We found diagnostic morphotypes at the genus or even species level in some cases, and also identified silicified epidermal cells in both archaeological and paleoecological samples; however, we found no clear pattern of morphotype distribution at subfamily level, a result that contrasts with GSSCP surveys from other regions. We reiterate calls for more intensive regional sampling to elucidate patterns of variation in both GSSCP and other silicified epidermal structures in grasses.

Citas

Albert Cristóbal, R. 1995. Nuevo sistema de análisis descriptivo para fitolitos de sílice. Pyrenae 26: 19-38.

Ball, T. B., J. S. Gardner & N. Andreson. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monococum, T. dicoccon, T. dicoccoides, and T. aestivum) and Barley (Hordeum vulgare and H. spontaneum) (Gramineae). American Journal of Botany 86: 1615- 1623. https://doi.org/10.2307/2656798

Bremond, L., A. Alexandre, M. Wooller, C. Hély, D. Williamson, P. Schäfer, A. Majule & J. Guiot. 2008. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change 61: 209-224. https://doi.org/10.1016/j. gloplacha.2007.08.016

Brown, D. A.1984. Prospects and limits of a phytolith key for grasses in the Central United States. Journal of Archaeological Science 11: 345- 368. https://doi.org/10.1016/0305- 4403(84)90016-5

Cavalcante, P. 1968. Contribuição ao estudo dos corpos silicosos das gramíneas amazônicas. Boletim do Museu Paraense Emilio Goeldi (Botânica) 30:1-38.

Ellis, R. 1979. A procedure for standardizing comparative leaf anatomy in the Poaceae. II. The epidermis as seen in surface view. Bothalia 12: 641-671. https://doi.org/10.4102/abc.v12i4.1441

Ferreira, M. J., C. Levis, J. Iriarte, C. R. Clement. 2019. Legacies of intensive management if forests around preColumbian and modern settlements in the Madeira-Tapajós interfluve, Amazonia. Acta Botânica Brasilica 33: 212-220. https://doi.org/10.1590/0102- 33062018abb0339

Gallego, L. & R. A. Distel. 2004. Phytolith assemblages in grasses native to Central Argentina. Annals of Botany 94: 865-874. https://doi.org/10.1093/ aob/mch214

Giraldo-Cañas D. 2013. Las gramíneas de Colombia. Riqueza, distribución, endemismo, invasión, migración, usos y taxonomías populares. Bogotá D. C.: Instituto de Ciencias Naturales, Universidad Nacional de Colombia.

Henry, A. G., P. S. Ungar, B. H. Passey, M. Sponheimer, L. Rossouw & M. Bamford. 2012. The diet of Australopithecus sediba. Nature 487: 90-93. https://doi.org/10.1038/ nature11185

Hilbert, L. E. Góes Neves, F. Pugliense, B. Whitney, M. Shock, E. Veasey, C. Zimpel & J. Iriarte. 2017. Evidence for mid-Holoceno rice domestication in the Americas. Nature Ecology & Evolution 1: 1693-1698. https://doi.org/10.1038/ s41559-017-0322-4

Hoorn, C. G. Bogotá, M. Romero-Báez, E. Lammertsma, S. Flantua, E. Dantas, R. Dino, D. Carmo, J. F. Chemale. 2017. The Amazon at sea: onset and stages of the Amazon river from a marine record, with special reference to Neogene plant turnover in the drainage basin. Global Planet Change 153: 51-65. http://dx.doi. org/10.1016/j.gloplacha.2017.02.005

Hoorn, C., T. Kukla, G. BogotáÁngel, E. van Soelen, C. GonzálezArango, F. P. Wesselingh, H. Vonhof, P. Val, G. Morcote-Ríos, M. Roddaz, E. L. Dantas, R. Ventura Santos, J. S. Sinninghe Damsté, J.-H. Kim & R. J. Morley. 2022. Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change 210: 103717. https://doi.org/10.1016/j. gloplacha.2021.103717

Instituto de Ciencias Naturales (ICN). 2019. Colecciones en línea. http://www. biovirtual.unal.edu.co/fitolitos.

Khan, R., S. Z. Ul Abidin, A. S. Mumtaz, S. Jamsheed& H. Ullah. 2017. Comparative leaf and pollen micromorphology on some grass taxa (Poaceae) distributed in Pakistan. International Journal of Nature and Life Sciences 1: 72-82.

Londoño, X. & M. Kobayashi. 1991. Estudio comparativo entre los cuerpos silíceos de Bambusa y Guadua. Caldasia 16: 407-418. Madella, M., A. Alexandre & T. Ball. 2005. International code of phytolith nomenclaure 1.0. Annals of Botany 96: 253-260. https://doi.org/10.1093/aob/ mci172

McMichael, C. & M. Bush. 2019. Spaciotemporal patterns of the precolumbian people in Amazonia. Quaternary Researech 92: 53-69. https://doi.org/10.1017/qua.2018.152

Morcote-Ríos, G., D. Giraldo-Cañas & L. Raz. 2015. Illustrated catalogue of contemporary phytoliths for archaeology and paleoecology. I. Amazonian grasses of Colombia. Bogotá D. C.: Instituto de Ciencias Naturales, Universidad Nacional de Colombia.

Neumann, K., A. G. Fahmy, N. Müller-Scheeβel & M. Scmmidt. 2017. Taxonomic, ecological and paleoecological significance of leaf phytoliths in west African grasses. Quaternary International 434: 15- 32. http://dx.doi.org/10.1016/j. quaint.2015.11.039

Palmer, P. G. & A. E. Tucker. 1981. A scanning electron microscope survey of the epidermis of East African grasses, I. Smithsonian Contributions to Botany 49: 1-84. https://doi. org/10.5479/si.0081024X.49

Pearsall, D. 1989. Paleoethnobotany: A handbook of procedures. San Diego: Academic Press. Piperno, D. R.1988. Phytolith analysis. An archaeological and geological perspective. San Diego: Academic Press.

Piperno, D. R. 1997. Phytoliths and microscopic charcoal from leg 155: a vegetational and fire history of the Amazon basin during the last 75 K.Y. In: R. D. Flodd, D. J. W. Piper, A. Klaus & L. C. Peterson (eds.), Proceedings of the Ocean Drilling Program, Scientific Results 155: 411-418. https://doi. org/10.2973/odp.proc.sr.155.250.1997

Piperno, D. R. 2006. Phytoliths. A comprehensive guide for archaeologists and paleoecologists. Lanham: Altamira Press.

Piperno, D. R. & D. M. Pearsall. 1998. The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematic and fossil phytolith identification. Washington, D.C.: Smithsonian Institution Press.

Prat, H. 1932. L’épiderme des graminées. Étude anatomique et systématique. Annales des Sciences Naturelles: Botanique (sér. 10) 14: 117-324.

Prychid, C., P. Rudall & M. Gregory. 2003. Systematics and biology of silica in monocotyledons. The Botanical Review 69: 377-440. https://doi.org/10.1663/0006- 8101(2004)069[0377 : SABOSB]2.0.CO;2

Richards, P. W. 1996. The tropical rain forest and ecological study. Second edition. Cambridge: Cambridge University Press.

Rudall, P. J., C. Prychid & T. Gregory T. 2014. Epidermal patterning and silica phytoliths in grasses: An evolutionary history. The Botanical Review 80: 59- 71. https://doi.org/10.1007/s12229-014- 9133-3

Soreng, R. J., P. M. Peterson, K. Romaschenko, G. Davidse, J. K. Teisher, L. G. Clark, P. Barberá, L. J.

Gillespie & F. O. Zuloaga. 2017. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55: 259-290. https://doi. org/10.1111/jse.12262

Strömberg, C. A. E. 2006. The evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology 32: 236-258. https://doi. org/10.1666/0094-8373(2006)32[236: eohiet]2.0.co;2

Strömberg, C. A. E., R. Dunn, C. Crifò & E. Harris. 2018. Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: D. Croft, D. Su & S. Simpson (eds.), Methods in Paleoecology: reconstructing Cenozoic terrestrial environments: 235-287.Cham: Springer.

Strömberg, C. A. E., V. S. Di Stilio & Z. Song. 2016. Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology 30: 1286-1297. https://doi. org/10.1111/1365-2435.12692

Twiss, P. C, E. Suess & R. M. Smith. 1969. Morphological classification of grass phytoliths. Soil Science Society of America Proceeding 33: 109-115. https://doi.org/10.2136/ sssaj1969.03615995003300010030x

Whang, S., K. Kim & W. Hess. 1998. Variation of silica bodies in leaf epidermal long cell within and among seventeen species of Oryza (Poaceae). American Journal of Botany 85: 461- 466. https://doi.org/10.2307/2446428

Zhao, Z. J., D. M. Pearsall, R. A. Benfer & D. R. Piperno. 1998. Distinguishing rice (Oriza sativa Poaceae) from wild Oryza species throung phytolith analysis. II: Finalized method. Economic Botany 52: 134-145.

Zucol, A. 1992. Microfitolitos: I. Antecedentes y terminología. Ameghiniana 29: 353-362.

Zucol, A. 1998. Microfitolitos de las Poaceae argentinas: II. Microfitolitos foliares de algunas especies del género Panicum (Poaceae, Paniceae) de la provincia de Entre Ríos. Darwiniana 36: 29-50.

Zucol, A. 2000. Fitolitos de Poaceae de Argentina. III. Fitolitos foliares de especies del género Paspalum (Paniceae) en la provincia de Entre Ríos. Darwiniana 38: 11-32.

Publicado

2025-03-31

Número

Sección

Artículos