Behavior of Top Oil and Hot Spot Temperatures in Oil-Immersed Transformers by Means of Electric Vehicle Load Input
Main Article Content
Abstract
The purpose of the following work is to calculate the top oil and hot spot temperature increases that the 187 MVA power transformer may experience, and to establish the limitations and guidelines within an acceptable level of operation within the IEEE C57. 91-1995, within the study there is a brief exposition of the equations used under the standard used, by means of Matlab code the calculation and study of the different scenarios that the load may have, the text presents the behavior figures under 4 operating conditions such as: normal load, top load, short- and long-term emergency load, through the initial base load profile of the table C.1 of the IEEE C57.91-1995 standard. In addition, the transformer temperature behavior due to the incorporation of distributed generation by means of photovoltaic panels and load increase due to the introduction of electric vehicles to the system is analyzed with reference to the InovGrid project carried out in the country of Portugal.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
F. Cayambe, J. Martínez, “Análisis de la vida útil del transformador de potencia en régimen de explotación. Aplicación al sistema de transmisión ecuatoriano”, Escuela Politécnica Nacional, Quito, 2013.
A. Naderian, P.Patabbi and L. Lamarre “Improving the Assessment of Remaining Life of Service Aged Power Transformers”, Electrical Insulation Conference, Calgary, Alberta, Canadá,, Junio, 2019.
IEEE Std C57.91-1995, “IEEE Guide for Loading Mineral-Oil-Immersed Transformers,” Instituto de Ingenieros Eléctricos y Electrónicos, Nueva York, 1996.
IEEE PC57.119 (P838) (D13.1/1-29-96), Draft Recommended Practice for Performing Temperature Rise Tests on Oil-Immersed Power Transformers at Loads Beyond Nameplate Rating5.
A. Messias. “The Inovgrid Project: Distribution Network Evolution As A Decisive Answer To The New Challenges In The Electrical” Sector. Edp Distribuição, Año:2009.
I. Juarez, V, Larind, N. Vásquez, “Estudio de la vida útil del transformador de potencia en servicio” Universidad de el Salvador, Escuela de Ingeniería Eléctrica, El Salvador 2018.
J. Castro, G. Gomez, O. Mata, “Índice de estimación de la vida residual en transformadores eléctricos de potencia basado en condición” Tecnología en Marcha. Vol. 35, No 4. Octubre-diciembre, 2022. Pág. 71-83
Guide for Loading Mineral-oil-Immersed Transformers and Step-Voltage Regulators, IEEE Standard C57.91, 2011
K. Lingming, M. Wenxiong, G. Xinyuan, L Tian, Z. Fanke, C. Haitao “Application of Insulation Aging Evaluation Method for Distribution Transformers in Practice” IEEE Xplore ,2021.
IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step Voltage Regulators, IEEE Standard C57.91, 2011.
ASTM D3487-82a, Standard Specification for Mineral Oil in Electrical Apparatus.
J. Chavez, “Análisis de generación distribuida a través del diseño de un sistema fotovoltaico conectado al amt chs031–Hidrandina u.n Chimbote”Universidad Nacional del Santa, Nuevo Chimbote, Perú, 2022.
Perez-Arriaga, I., Knittle, C.: ‘Utility of the future: an mit energy iniative response to an industry in transition’ (MIT Energy Initiative, Cambridge, MA, USA, 2016)
IEA, “Global ev outlook: to electric mobility,” IEA: Paris, France, 2019. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2019.
A. Bazurto, J. Zuñiga, D. Echeverria, C. Lozano “Perspectiva del transformador de distribución en redes eléctricas con alta penetración de generación distribuida y vehículos eléctricos”, Universidad Militar de Nueva Granada, vol. 26, núm. 2, pp. 35-48, 2016.
Trovão, J. and Pereirinha, P. (2011). Electric vehicles chargers characterization: Load demand and harmonic distortion. En 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, pp. 1-7. doi: http://dx.doi.org/10.1109/epqu.2011.6128871