Non-Powered Hand Tool: Size Selection from an Anthropometric Ergonomic Point of View

Autores/as

  • Ricardo Arciniega Rocha Óbuda University
  • Vanessa Cristina Erazo Chamorro Óbuda University
  • Szabo Gyula Óbuda University

DOI:

https://doi.org/10.29166/ingenio.v5i2.4233

Palabras clave:

Industrial Risk, Tools selection, Hand tools, Occupational safety, Tool size

Resumen

Abstrac

In order to improve production companies are laying out resources to minimize time and save the worker force in each workstation. It means the ergonomist specialist must choose the correct hand device according to each worker. The goal of this research is to set forth an instructions set for tool hand tools selection focused on anthropometrics of the workers in order to rise production using the adequate tool for the task. During the study, the anthropometrical data is processed and evaluated to obtain the dispersion population for each finger length and identified the main body size parameters for design tools. As a result, a methodical guide to help ergonomics team managers to make sure the correct and appropriate tool size selection to reduce the possibility of future illness for workers and the tailored ergonomic design of each workstation according to specific data for the worker.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Ricardo Arciniega Rocha, Óbuda University

Óbuda University

Vanessa Cristina Erazo Chamorro, Óbuda University

Óbuda University

Szabo Gyula, Óbuda University

Óbuda University

Citas

M. Cardona and C. E. García Cena, “Biomechanical Analysis of the Lower Limb: A Full-Body Musculoskeletal Model for Muscle-Driven Simulation,” IEEE Access, vol. 7, pp. 92709–92723, 2019, doi: 10.1109/ACCESS.2019.2927515.

Z. Wang and C. Zhang, “Three-Dimensional Hand Reconstruction by Single-Shot Structured Light Line Pattern,” IEEE Access, vol. 6, pp. 59881–59890, 2018, doi: 10.1109/ACCESS.2018.2875496.

R. P. Arciniega-Rocha et al., “Gasket Tester for Low-Pressure Pipelines: Design and Tests,” Nov. 2019, doi: 10.1109/ETCM48019.2019.9014904.

G. Szabo, “ErgoCapture—A Motion Capture Based Ergonomics Risk Assessment Tool,” Advances in Physical Ergonomics and Human Factors: Part II - Google Books, vol. 2, no. 2 2018, pp. 313–321, 2018, Accessed: Oct. 11, 2021. [Online]. Available: https://books.google.hu/books?hl=en&lr=&id=9olYBAAAQBAJ&oi=fnd&pg=PA313&dq=info:U7F4Q-XlwmcJ:scholar.google.com&ots=42cdmGH8Ee&sig=uP-mq3Eda8XxU9FIa2hry-dI81Y&redir_esc=y#v=onepage&q&f=false.

V. C. Erazo-Chamorro, R. P. Arciniega-Rocha, N. Rudolf, B. Tibor, and S. Gyula, “Safety Workplace: The Prevention of Industrial Security Risk Factors,” Applied Sciences 2022, Vol. 12, Page 10726, vol. 12, no. 21, p. 10726, Oct. 2022, doi: 10.3390/APP122110726.

B. Darío et al., “Design of Pin on disk tribometer under international standards,” Accessed: Oct. 12, 2021. [Online]. Available: https://repositorio.uisek.edu.ec/bitstream/123456789/4180/1/Byron Dario Analuiza Hidalgo.pdf.

G. Szabó and E. Németh, “Development an Office Ergonomic Risk Checklist: Composite Office Ergonomic Risk Assessment (CERA Office),” in Advances in Intelligent Systems and Computing, Aug. 2019, vol. 819, pp. 590–597, doi: 10.1007/978-3-319-96089-0_64.

K. Petrie et al., “A framework to create more mentally healthy workplaces: A viewpoint,” Australian and New Zealand Journal of Psychiatry, vol. 52, no. 1, pp. 15–23, Jan. 2018, doi: 10.1177/0004867417726174.

H. Veisi, A. Choobineh, H. Ghaem, and Z. Shafiee, “The effect of hand tools’ handle shape on upper extremity comfort and postural discomfort among hand-woven shoemaking workers,” International Journal of Industrial Ergonomics, vol. 74, p. 102833, Nov. 2019, doi: 10.1016/J.ERGON.2019.102833.

R. Graveling, Ergonomics and Musculoskeletal Disorders (MSDs) in the Workplace. 2018.

G. Szabó, “Usability of machinery,” in Advances in Intelligent Systems and Computing, 2018, vol. 604, pp. 161–168, doi: 10.1007/978-3-319-60525-8_17.

K. W. Li, “Ergonomic design and evaluation of wire-tying hand tools,” International Journal of Industrial Ergonomics, vol. 30, no. 3, pp. 149–161, Sep. 2002, doi: 10.1016/S0169-8141(02)00097-5.

G. Harih and B. Dolšak, “Tool-handle design based on a digital human hand model,” International Journal of Industrial Ergonomics, vol. 43, no. 4, pp. 288–295, Jul. 2013, doi: 10.1016/J.ERGON.2013.05.002.

M. S. Sohrabi, “The effect of non-powered hand tools’ diameter on comfort and maximum hand torque,” Iranian Journal of Ergonomics, vol. 3, no. 2, pp. 68–75, 2015, Accessed: Oct. 18, 2021. [Online]. Available: http://journal.iehfs.ir/article-1-177-en.html.

M. Aptel, L. Claudon, and J. Marsot, “Integration of Ergonomics Into Hand Tool Design: Principle and Presentation of an Example,” http://dx.doi.org/10.1080/10803548.2002.11076518, vol. 8, no. 1, pp. 107–115, 2015, doi: 10.1080/10803548.2002.11076518.

R. P. Arciniega-Rocha and V. C. Erazo-Chamorro, “Non-Powered Hand Tool Size Selection Method,” in Mérnöki Szimpózium a Bánkin Előadásai : Proceedings of the Engineering Symposium at Bánki (ESB2021, 1st ed., vol. 1, R. Horváth, Ed. Budapest: Óbudai Egyetem, 2022, pp. 37–43.

C. Uhrenholdt Madsen, M. L. Kirkegaard, J. Dyreborg, and P. Hasle, “Making occupational health and safety management systems ‘work’: A realist review of the OHSAS 18001 standard,” Safety Science, vol. 129, p. 104843, Sep. 2020, doi: 10.1016/J.SSCI.2020.104843.

“EUR-Lex - L:1989:183:TOC - EN - EUR-Lex,” Official Journal of the European Communities, vol. 32, 2018, Accessed: Oct. 25, 2021. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:1989:183:TOC.

NIOSH (National Institute for Occupational Safety and Health), “A Guide to Selecting Non-Powered Hand Tools,” California Department of Industrial Relations and the National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication, vol. 164, p. 2004, 2004, Accessed: Oct. 25, 2021. [Online]. Available: http://www.dir.ca.gov/dosh/puborder.asp.

C. Y. Wang and D. C. Cai, “Hand tool handle size and shape determination based on hand measurements using a contour gauge,” Human Factors and Ergonomics in Manufacturing & Service Industries, vol. 30, no. 5, pp. 349–364, Sep. 2020, doi: 10.1002/HFM.20846.

B. Guo, L. Tian, and W. Fang, “Effects of operation type and handle shape of the driver controllers of high-speed train on the drivers’ comfort,” International Journal of Industrial Ergonomics, vol. 58, pp. 1–11, Mar. 2017, doi: 10.1016/j.ergon.2017.01.003.

V. C. Erazo-Chamorro, “Repositorio Digital Universidad Técnica del Norte: Máquina peladora rotadora de maní tostado para la industria artesanal,” 2014. http://repositorio.utn.edu.ec/handle/123456789/3755 (accessed Jan. 20, 2020).

S. Verma, “Development and analysis on ergonomic design of hand tool,” International Journal of Research and Analytical Reviews, vol. 6, no. 1, pp. 2348–2350, 2019, Accessed: May 30, 2022. [Online]. Available: http://ijrar.com/.

P. Rosero et al., “Human Sit Down Position Detection Using Data Classification and Dimensionality Reduction Case based reasoning (CBR) for medical applications View project Optimización del Master Production Schedule en entornos inciertos View project Human Sit Down Position Detection Using Data Classification and Dimensionality Reduction,” 2017, doi: 10.25046/aj020395.

M. T. Haque and M. T. Haque, “Ergonomic design of hammer handle to reduce musculoskeletal disorders of carpenters Efficiency and Productivity Improvement View project Ergonomic design of hammer handle to reduce musculoskeletal disorders of carpenters,” International Journal of Research in Advanced Engineering and Technology 78 International Journal of Research in Advanced Engineering and Technology, pp. 78–83, 2018, doi: 10.22271/engineering.

I. Halim, “The Influence of Hand Tool Design on Hand Grip Strength: A Review | International Journal of Integrated Engineering,” INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, vol. 11, no. 6, pp. 53–69, 2019, Accessed: May 30, 2022. [Online]. Available: https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/3802.

S. Pheasant, “Anthropometric data – Limited use only,” 2005. http://limited-use-only.com/strategies/anthropometric-data/ (accessed Oct. 26, 2021).

V. C. Erazo-Chamorro, R. P. Arciniega-Rocha, and G. Szabo, “Healthy and safe workplace definition: a friendly boundary for a complex issue,” in Mérnöki Szimpózium a Bánkin Előadásai : Proceedings of the Engineering Symposium at Bánki (ESB2021), 2022, pp. 51–56, Accessed: Jun. 21, 2022. [Online]. Available: https://bgk.uni-obuda.hu/esb/system/files/file_upload/esb2021.pdf.

D. Mishra and S. Satapathy, “Hand Tool Injuries of Agricultural Farmers of South Odisha in India,” Materials Today: Proceedings, vol. 5, no. 9, pp. 17648–17653, Jan. 2018, doi: 10.1016/J.MATPR.2018.06.084.

“ISO 691:2005(en), Assembly tools for screws and nuts — Wrench and socket openings — Tolerances for general use.” https://www.iso.org/obp/ui/#iso:std:iso:691:ed-4:v1:en (accessed Mar. 22, 2022).

ILO, “Safety and health in the use of machinery,” p. 154, 2013.

C. C. for O. H. and S. CCOHS, “Hand Tool Ergonomics - Tool Design : OSH Answers,” Canada, 2020. https://www.ccohs.ca/oshanswers/ergonomics/handtools/tooldesign.html (accessed Mar. 22, 2022).

Descargas

Publicado

2022-12-12

Cómo citar

Arciniega Rocha, R. ., Erazo Chamorro, V. C. ., & Gyula, S. . (2022). Non-Powered Hand Tool: Size Selection from an Anthropometric Ergonomic Point of View. INGENIO, 5(2), 31–38. https://doi.org/10.29166/ingenio.v5i2.4233