Voltage stability analysis in a subtransmission system, using qv-pv curves and modal analysis

Main Article Content

Rogger Peña
Hólger Santillán
Juan Morales

Abstract

Voltage instability in a subtransmission electrical system in the Province of Manabí can occur in different ways such as: increased load, maximum machine performance operability, very remote generation points, very high inductive reactive powers, among others. All this generates problems in the sub-transmission of electrical power in the voltages and angles of the nodes of the system, by obtaining the PV curves it was identified that the Chone bar of 69 kV is the most critical and the QV the Manta bar of 69 kV under normal grid conditions using DigSilent software. With the increased load of 0.1 Mvar, the demand projections will be made using the reduced Jacobian matrix to obtain the participation factors, where the most critical of the branches is the Quevedo substation that has 0.8986 and the Daule-Peripa generation that arrives to have a value of 1, where all these operations were performed in Matlab. The need for this study analysis is of great importance, since with these projection values ​​a voltage instability will be created and the network would collapse.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Peña, R., Santillán, H., & Morales, J. . (2021). Voltage stability analysis in a subtransmission system, using qv-pv curves and modal analysis. INGENIO, 4(2), 4–15. https://doi.org/10.29166/ingenio.v4i2.3165
Section
Artículos
Author Biographies

Rogger Peña, Instituto Superior Tecnológico Simón Bolívar, Guayaquil

Docente, Carrera de Electricidad y Carrera de Electromecánica

Hólger Santillán, Universidad Politécnica Salesiana, Guayaquil

Docente, Carrera de Telecomunicaciones

Juan Morales, Universidad Politécnica Salesiana, Guayaquil

Docente, Carrera de Electricidad

References

P. D. E. Distribución, “Voltage Stability Analysis in Power Distribution Feeder Reconfiguration,” vol. 33, no. 41, pp. 30–35, 2009.

ARCONEL 006/2020, “Resolución No. ARCONEL-006/2020,” pp. 1–58, 2020, [Online]. Available: http://www.cna-ecuador.com/wp-content/uploads/2020/06/Reg-Sust-Reg-ARCONEL001-20-Directorio-res-006-20-firm.pdf.

ARCONEL, “RESOLUCIÓN Nro. ARCONEL-053/18,” Arconel, pp. 1–40, 2018.

M. A. Joodi, I. K. Ibraheem, and F. M. Tuaimah, “Power transmission system midpoint voltage fixation using SVC with genetic tuned simple PID controller,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 5438–5443, 2018, doi: 10.14419/ijet.v7i4.24799.

B. Brusiłowicz, W. Rebizant, and J. Szafran, “A new method of voltage stability margin estimation based on local measurements,” APAP 2011 - Proc. 2011 Int. Conf. Adv. Power Syst. Autom. Prot., vol. 3, pp. 2443–2447, 2011, doi: 10.1109/APAP.2011.6180655.

G. Chen, J. L. Moiola, and H. O. Wang, “Bifurcation control: Theories, methods, and applications,” Int. J. Bifurcat. Chaos, vol. 10, no. 3, pp. 511–548, 2000, doi: 10.1142/S0218127400000360.

Z. Wang, X. Yin, Y. Chen, J. Lai, L. Li, and Z. Qi, “DSTATCOM integrated with Y-y connection transformer for reactive power compensation,” Int. J. Electr. Power Energy Syst., vol. 117, no. September 2018, p. 105721, 2020, doi: 10.1016/j.ijepes.2019.105721.

T. Cui, Y. Shen, Z. Hu, J. Song, H. Guo, and X. Wang, “Voltage Regulation of Synchronous Condensers and Switching Capacitors in Power Grids with a UHV DC/AC System,” Proc. - 2018 3rd Int. Conf. Smart City Syst. Eng. ICSCSE 2018, no. 1, pp. 552–556, 2018, doi: 10.1109/ICSCSE.2018.00118.

V. F. Pires, A. V. Pombo, and J. M. Lourenço, “Multi-objective optimization with post-pareto optimality analysis for the integration of storage systems with reactive-power compensation in distribution networks,” J. Energy Storage, vol. 24, no. April, p. 100769, 2019, doi: 10.1016/j.est.2019.100769.

M. Hasani and M. Parniani, “Method of combined static and dynamic analysis of voltage collapse in voltage stability assessment,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 2005, pp. 1–6, 2005, doi: 10.1109/TDC.2005.1547182.

M. S. Saddique et al., “Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques―Status and technological review,” Electr. Power Syst. Res., vol. 178, no. August 2019, p. 106031, 2020, doi: 10.1016/j.epsr.2019.106031.

B. Singh and R. Kumar, “A comprehensive survey on enhancement of system performances by using different types of FACTS controllers in power systems with static and realistic load models,” Energy Reports, vol. 6, pp. 55–79, 2020, doi: 10.1016/j.egyr.2019.08.045.

S. Chansareewittaya, “Optimal Allocations of FACTS Controllers for Economic Dispatch using Evolutionary Programming,” ICSEC 2017 - 21st Int. Comput. Sci. Eng. Conf. 2017, Proceeding, vol. 6, pp. 1–4, 2018, doi: 10.1109/ICSEC.2017.8443901.

M. Tituaña and D. Carrión, “Análisis de inestabilidad de tensión en el sistema eléctrico de potencia usando el análisis modal,” p. 22, 2016.

P. Cao et al., “Analysis of electrical length compensation types for tuned half-wavelength transmission lines,” Int. J. Electr. Power Energy Syst., vol. 115, no. August 2019, p. 105520, 2020, doi: 10.1016/j.ijepes.2019.105520.

P. A. Löf, T. Smed, G. Andersson, and D. J. Hill, “Fast calculation of a voltage stability index,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 54–64, 1992, doi: 10.1109/59.141687.

M. MIRANDA, “DISEÑO DE SISTEMA DE GENERACIÓN FOTOVOLTAICA PARA VIVIENDAS CONECTADAS A LA RED DE DISTRIBUCIÓN, EN EL CONTEXTO DE LA LEY N° 20.571,” 2016.

Á. A. Recalde, “Estabilidad De Los Sistemas De Potencia: Problemáticas en escenarios complejos,” ResearchGate, vol. 1, no. October 2014, p. 6, 2015, [Online]. Available: https://www.researchgate.net/profile/Angel_Recalde/publication/273450101_ESTABILIDAD_DE_LOS_SISTEMAS_DE_POTENCIA_PROBLEMATICAS_EN_ESCENARIOS_COMPLEJOS/links/550204b60cf2d60c0e62981f/ESTABILIDAD-DE-LOS-SISTEMAS-DE-POTENCIA-PROBLEMATICAS-EN-ESCENARIOS-COMPL.

A. Amer, “Voltage Collapse Prediction for Interconnected Power Systems,” Morgantown, West Virginia, 2000, [Online]. Available: http://www.wvuscholar.wvu.edu:8881/exlibris/dtl/d3_1/apache_media/L2V4bGlicmlzL2R0bC9kM18xL2FwYWNoZV9tZWRpYS80OTg5.pdf.

N. Manjul and M. S. Rawat, “PV/QV Curve based Optimal Placement of Static Var System in Power Network using DigSilent Power Factory,” 8th IEEE Power India Int. Conf. PIICON 2018, pp. 1–6, 2018, doi: 10.1109/POWERI.2018.8704441.

A. C. Zambroni De Souza, F. W. Mohn, I. F. Borges, and T. R. Ocariz, “Using PV and QV curves with the meaning of static contingency screening and planning,” Electr. Power Syst. Res., vol. 81, no. 7, pp. 1491–1498, 2011, doi: 10.1016/j.epsr.2011.02.012.

V. N. Sewdien, R. Preece, J. L. R. Torres, and M. A. M. M. Van Der Meijden, “Evaluation of PV and QV based voltage stability analyses in converter dominated power systems,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2018-October, pp. 161–165, 2018, doi: 10.1109/APPEEC.2018.8566421.

M. A. Ríos, A. Torres M., and M. T. de Torres, “Estabilidad de voltaje en sistemas de potencia: Caso de aplicación a la EEB,” Rev. Ing., no. 8, pp. 19–24, 1997, doi: 10.16924/revinge.8.4.

H. G. P. Kesse, “C=min],” no. July, p. 9935, 1986.

M. Qemali, R. Bualoti, and M. Çelo, “N-1 Criterion , Albanian Power System Case,” pp. 1–8, 2016.

R. S. Moura, A. C. Zambroni de Souza, B. I. Lima Lopes, and F. W. Mohn, “Effects of QV curves in the dynamic behaviour of power systems,” IET Gener. Transm. Distrib., vol. 10, no. 12, pp. 2861–2870, 2016, doi: 10.1049/iet-gtd.2015.1042.

D. Eltigani, “Method of Computing Maximum Loadability , Using Continuation Power Flow ,” pp. 0–4, 2013.

A. Bonini Neto and D. Amancio Alves, “Singularities Analysis of the Jacobian Matrix Modified in the Continuation Power Flow: Performance Evaluation,” IEEE Lat. Am. Trans., vol. 15, no. 11, pp. 2137–2143, 2017, doi: 10.1109/TLA.2017.8070419.

K. Vu, M. M. Begovic, D. Novosel, and M. M. Saha, “Use of local measurements to estimate voltage-stability margin,” IEEE Power Ind. Comput. Appl. Conf., pp. 318–323, 1997.

D. Hau and A. Lee, “Equivalent Nodal Analysis,” vol. 31, no. 1, pp. 454–463, 2016.

N. C. Yang and H. C. Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands,” Int. J. Electr. Power Energy Syst., vol. 96, no. September 2017, pp. 473–483, 2018, doi: 10.1016/j.ijepes.2017.09.042.

T. Van Cutsem, “Voltage instability: Phenomena, countermeasures, and analysis methods,” Proc. IEEE, vol. 88, no. 2, pp. 208–227, 2000, doi: 10.1109/5.823999.

Y. Song, D. J. Hill, and T. Liu, “State-in-mode analysis of the power flow Jacobian for static voltage stability,” Int. J. Electr. Power Energy Syst., vol. 105, no. September 2018, pp. 671–678, 2019, doi: 10.1016/j.ijepes.2018.09.012.

O. D. Montoya, W. Gil-Gonzalez, and V. M. Garrido, “Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 2, pp. 300–304, 2020, doi: 10.1109/TCSII.2019.2904211.

P. Li, H. Su, C. Wang, Z. Liu, and J. Wu, “PMU-Based estimation of voltage-to-power sensitivity for distribution networks considering the sparsity of jacobian matrix,” IEEE Access, vol. 6, no. c, pp. 31307–31316, 2018, doi: 10.1109/ACCESS.2018.2841010.

W. Xu, Y. Mansour, and B. C. Hydro, “Voltage stability analysis using generic dynamic load models,” IEEE Trans. Power Syst., vol. 9, no. 1, pp. 479–493, 1994, doi: 10.1109/59.317575.

G. K. Morison, B. Gao, and P. Kundur, “Voltage stability analysis using static and dynamic approaches,” IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1159–1171, 1993, doi: 10.1109/59.260881.

M. K. Pal, “Voltage stability conditions considering load characteristics,” IEEE Trans. Power Syst., vol. 7, no. 1, pp. 243–249, 1992, doi: 10.1109/59.141710.

B. Gao, G. K. Morison, and P. Kundur, “Voltage Stability Evaluation using Modal Analysis,” IEEE Power Eng. Rev., vol. 12, no. 11, p. 41, 1992, doi: 10.1109/MPER.1992.161430.