Influence on Structural Design of Grade 80 Reinforcing Steel and High Strength Concrete (55mpa) Versus Conventional Grade 60 Reinforcing Steel and f’c 28mpa Concrete in an 18-Story Reinforced Concrete Building.
Main Article Content
Abstract
The implementation of materials with higher resistance in the construction industry offers important advantages, not only in the behavior of the infrastructure but in the economy of large civil works as well. This project pretends to study the influence of concrete (f’c 55 MPa) and reinforced steel (Grade 80) of high resistance in contrast with the commonly used, concrete (f’c 28 MPa) and reinforced steel (Grade 60), in buildings of reinforced concrete and medium size, formed by a dual system. The developed edifications under both proposals are in the north center of Quito city. They have 18 elevated floors and 4 underground-floors, that are destined for residential apartments and businesses. The Ecuadorian regulations of Construction based on the ACI, establish the fundamental basis and parameters for the design of the elements that conform to the infrastructure, starting from the pre-sizing, followed by the modelling, structural analysis, and finalizing with the design with the defined structural plans. Using structural modeling software, there are applied three important analyses to these edifications: linear static, linear dynamic, and non-linear static (pushover); which allows verifying its behavior under the gravitational and lateral loads to which they are subjected and the resistance of their different elements. Once the structural plans are detailed, it is proceeded to quantify the concrete and the reinforced steel with its respective analysis of unitary prices, allowing the establishment of budgets for each proposal. Finally, all the results are retrieved and analyzed, both structurally and economically, with the purpose of evaluating the influence of the materials of high resistance in contrast with the conventional, defining the pros and cons of both design proposals.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
C. M, Utilización de los Concretos de Alta Resistencia y Concretos Celulares en la Industria de la Construcción Ecuatoriana, 2015.
D. Gustafson, Mayor Límite de Fluencia para el Acero de Refuerzo, American Concrete Institute, ACI,5, 2010.
H. &. G. D. Oña, Análisis Costo - Beneficio del Uso de Hormigón de ALta resistencia (f'c 45 MPa) versus Hormigón Normal (f'c 28 MPa), Quito: Escuela Politécnica Nacional, 2020.
R. &. G. D. Maldonado, Análisis Comparativo Económico Estructural de la Utilización de Acero de refuerzo de ALta Resistencia Grado 80 frente a acero grado 60 en un Edficicio de 15 Pisos, Quito: Escuela Politécnica Nacional, 2021.
J. Mc Cormac y R. Brown, Diseño de concreto Reforzado, México: Alfaomega, 2018.
Ministerio de Desarrollo Urbano y Vivienda, Peligro Sismico Diseño Sismo Resistente, NEC SE DS, Quito: MIDUVI, 2014.
ASCE/SEI, Seismic Evaluation and Retrofit of Existing Buildings, Reston: American Society of Civil Engineers., 2017, pp. 41-17.
American Concrete Institute, Building Code Requirements for Structural Concrete, Farmington Hills: American Concrete Institute, 2019.
R. Aguiar, MICROZONIFICACIÓN SÍSMICA DE QUITO, Valle de los Chillos: Centro de Investigaciones Científicas ESPE, 2013.
Ministerio de Desarrollo Urbano y Vivienda, CARGAS (NO SÍSMICAS), NEC SE CG, Quito: MIDUVI, 2014.
H. Alejandro, Módulo de elasticidad de hormigones de peso normal empleados en el Ecuador f´c: 21, 24, 28, 35 MPa, Quito: Escuela Politécnica Nacional, 2014.
American Society of Civil Engineers, Seismic Evaluation and Retrofit of Existing Buildings, ASCE/SEI, 41-17, American Society of Civil Engineers, 2017.
FEMA440, FEMA 440 IMPROVEMENT OF NONLINEAR STATIC, Washington : FEMA, 2005.