Bayesian Statistics for Inference over Electoral Behavior

Main Article Content

Atal Kumar Vivas Paspuel
David Alfredo Vivas Paspuel
Alberto Benjamín Santillán Tituaña

Abstract




The results provided by the electoral entities do not allow to know the support to the parties by social classes, age groups or races. In this work, the electoral population was divided by age classes and inferences were made about the proportions of support by age for the Alianza País and CREO parties, the most important of the presidential contest for Ecuador in 2013. The results of the political contest were taken in contingency tables of RxC size at the district level and through the ecological inference the proportions of support for the candidates by these classes were estimated. Inferences were made through Bayesian techniques by a Dirichlet-Multinomial hierarchical model and Markov Chain Monte Carlo computational methods executed by the RStan package were used.


Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vivas Paspuel, A. K., Vivas Paspuel, D. A. ., & Santillán Tituaña, A. B. . (2022). Bayesian Statistics for Inference over Electoral Behavior. INGENIO, 5(2), 4–13. https://doi.org/10.29166/ingenio.v5i2.3712
Section
Artículos
Author Biographies

Atal Kumar Vivas Paspuel, Universidad de las Fuerzas Armadas ESPE

Universidad de las Fuerzas Armadas ESPE

David Alfredo Vivas Paspuel, Universidad San Francisco de Quito

Universidad San Francisco de Quito

Alberto Benjamín Santillán Tituaña, Universidad de las Fuerzas Armadas ESPE

Universidad de las Fuerzas Armadas ESPE

References

“Consejo Nacional Electoral Ecuador.” http://cne.gob.ec/es/ (accessed Aug. 11, 2021).

D. Duncan and B. Davis, “An Alternative to Ecological Correlation,” Am. Sociol. Rev., vol. 18, no. 6, p. 665, Dec. 1953.

L. A. Goodman, “Ecological Regressions and Behavior of Individuals,” Am. Sociol. Rev., vol. 18, no. 6, p. 663, Dec. 1953.

G. King, A solution to the ecological inference problem, 1st edn. Princeton: Princeton University Press, 1997.

S. R. Flaxman, Y. X. Wang, and A. J. Smola, “Who supported Obama in 2012? Ecological inference through distribution regression,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, vol. 2015, pp. 289–298.

J. Pavia and R. Romero, “Improving estimates accuracy of voter transitions. Two new algorithms for ecological inference based on linear programming,” Advance, vol. 2021, pp. 1–24, Jun. 2021, [Online]. Available: /articles/preprint/Improving_estimates_accuracy_of_voter_transitions_Two_new_algorithms_for_ecological_inference_based_on_linear_programming/14716638/1.

P. Sandoval and S. Ojeda, “Estimation of Electoral Volatility parameters employing Ecological inference methods.” https://www.researchgate.net/publication/338951636_Estimation_of_Electoral_Volatility_parameters_employing_Ecological_inference_methods/references (accessed Aug. 11, 2021).

S. Flaxman, D. Sutherland, Y.-X. Wang, and Y. W. Teh, “Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata,” 2016.

G. King, O. Rosen, M. Tanner, and A. Wagner, “Ordinary Economic Voting Behavior in the Extraordinary Election of Adolf Hitler,” J. Econ. Hist., vol. 68, no. 4, 2008.

E. M. M. Ferreira Castela, “Inferencia ecológica para la caracterización de abstencionistas: el caso de portugal,” 2010.

O. Rosen, W. Jiang, G. King, and M. Tanner, Bayesian & Frequentist Inference for Ecological Inference: The RxC Case, Stat. Neerl., vol. 55, 2001.

G. King, O. Rosen, and M. Tanner, “Binomial Beta Models for Ecological Inference,” Sociol. Methods Res., vol. 28, 1999.

“Instituto Nacional de Estadística y Censos.” https://www.ecuadorencifras.gob.ec/institucional/home/ (accessed Aug. 11, 2021).

C. Plescia and L. De Sio, “An evaluation of the performance and suitability of R × C methods for ecological inference with known true values,” Qual. Quant., vol. 52, no. 2, pp. 669–683, Mar. 2018, doi: 10.1007/s11135-017-0481-z.

G. King, O. Rosen, and M. A. Tanner, “Ecological inference: New methodological strategies,” Ecol. Inference New Methodol. Strateg., pp. 1–431, Jan. 2004, doi: 10.1017/CBO9780511510595.

P. Lee, Bayesian statistics : an introduction. Wiley, 2012.

A. Gelman, B. Carlin, H. Stern, and B. Rubin, Bayesian Data Analysis, Third Edition (Statistical Science). 2014.

K. Imai and Y. Lu, “Bayesian and Likelihood Inference for 2 x 2 Ecological Tables: An Incomplete-Data Approach,” Polit. Anal., vol. 16, pp. 41–69, 2007, doi: 10.1093/pan/mpm017.

J. Kruschke, Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan, second edition. Elsevier Science, 2014.

M. A. Tanner, Tools for statistical inference : methods for the exploration of posterior distributions and likelihood functions. Springer, 1996.

“Stan Reference Manual.” https://mc-stan.org/docs/2_21/reference-manual/index.html (accessed Dec. 10, 2019).

A. Klima, T. Schlesinger, P. W. Thurner, and H. Küchenhoff, “Combining Aggregate Data and Exit Polls for the Estimation of Voter Transitions:,” Sociol. Methods Res., vol. 48, no. 2, pp. 296–325, May 2017.