Analysis of AC Flow Applied to an Electric Power System

Main Article Content

Alexander Emanuel Torres Romero
David Humberto Cárdenas Villacres
Raquel de los Angeles Salas Ibarra

Abstract

Presently, the Electrical Engineering program at the Salesian Polytechnic University, Guayaquil campus Centenario, faces resource limitations when it comes to teaching Alternating Current (AC) analysis in Power Electrical Systems. This project's primary objective is to propose and validate laboratory practices enabling the analysis of AC in these systems. It aims to develop an experimental, quantitative research methodology. In the second chapter, a comprehensive exposition of the theoretical framework of the electrical system, power flow equations, and analytical methods like Gauss-Seidel and Newton-Raphson is provided. The third chapter encompasses the construction of a module and programming using tools such as MATLAB, Simulink, Arduino, and the ACS712 integrated circuit. This module simulates and analyzes AC within the Power Electrical System. In the fourth chapter, we present the results of the practices, comparing theoretical and practical values.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Torres Romero, A. E., Cárdenas Villacres, D. H., & Salas Ibarra, R. de los A. . (2024). Analysis of AC Flow Applied to an Electric Power System. INGENIO, 7(1), 47–56. https://doi.org/10.29166/ingenio.v7i1.5491
Section
Artículos
Author Biographies

Alexander Emanuel Torres Romero, Universidad Politécnica Salesiana-UPS

Universidad Politécnica Salesiana, Guayaquil

Grupo de Investigación SMART TECH

Electronic engineering professor - SMART-TECH Research Group

Área de Especialización:  Robótica Industrial y Procesos de Automatización

manutorres098@gmail.com

https://orcid.org/0000-0002-6111-7793

David Humberto Cárdenas Villacres, Universidad Politécnica Salesiana-UPS

Universidad Politécnica Salesiana, Guayaquil

GISTEL Grupo de Investigación en Sistemas de Telecomunicaciones

Área de Especialización: Telecomunicaciones 

dcardenasv@ups.edu.ec

https://orcid.org/0000-0003-4241-9929

Raquel de los Angeles Salas Ibarra, Universidad Politécnica Salesiana-UPS

Universidad Politécnica Salesiana, Guayaquil

rsalasibarra@outlook.com

https://orcid.org/0009-0002-8248-2367

References

Cuevas Bravo David, “CALIDAD DE LA ENERGIA: Disturbios Eléctricos.” 2011, Ciudad Universitaria, 2011. doi: https://hdl.handle.net/20.500.14330/TES01000679406.

A. N. Khan et al., “Ensuring reliable operation of electricity grid by placement of facts devices for developing countries,” Energies (Basel), vol. 14, no. 8, pp. 1–21, 2021, doi: 10.3390/en14082283. DOI: https://doi.org/10.3390/en14082283

K. Kritsanasuwan, U. Leeton, and T. Kulworawanichpong, “Harmonic mitigation of AC electric railway power feeding system by using single-tuned passive filters,” Energy Reports, vol. 8, pp. 1116–1124, 2022, doi: 10.1016/j.egyr.2022.05.276. DOI: https://doi.org/10.1016/j.egyr.2022.05.276

“Potential Evaluation of Distributed Energy Resources with Affine Arithmetic,” 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, no. May 2019, pp. 4334–4339, 2019, doi: 10.1109/ISGT-Asia.2019.8881198. DOI: https://doi.org/10.1109/ISGT-Asia.2019.8881198

A. S. Nair, S. Abhyankar, S. Peles, and P. Ranganathan, “Computational and numerical analysis of AC optimal power flow formulations on large-scale power grids,” Electric Power Systems Research, vol. 202, no. June 2021, p. 107594, 2022, doi: 10.1016/j.epsr.2021.107594. DOI: https://doi.org/10.1016/j.epsr.2021.107594

Y. Tu et al., “Optimal Configuration of Battery Energy Storage for AC/DC Hybrid System Based on Improved Power Flow Exceeding Risk Index,” Electronics (Basel), vol. 12, no. 14, p. 3169, 2023, doi: 10.3390/electronics12143169. DOI: https://doi.org/10.3390/electronics12143169

A. G. Migisha, J. M. Ntayi, F. Buyinza, L. Senyonga, J. Abaliwano, and M. S. Adaramola, “Review of Concepts and Determinants of Grid Electricity Reliability,” 2023, doi: 10.33.90. DOI: https://doi.org/10.3390/en16217220

Y. Lin, J. Hu, T. Wang, and Z. Wang, “Impact Mechanisms of Commutation Failure Caused by a Sending-End AC Fault and Its Recovery Speed on Transient Stability,” Electronics (Switzerland), vol. 12, no. 16, 2023, doi: 10.3390/electronics12163439. DOI: https://doi.org/10.3390/electronics12163439

F. Quinteros, D. Carrión, and M. Jaramillo, “Optimal Power Systems Restoration Based on Energy Quality and Stability Criteria,” Energies (Basel), vol. 15, no. 6, 2022, doi: 10.3390/en15062062. DOI: https://doi.org/10.3390/en15062062

M. Uzair, M. Eskandari, L. Li, and J. Zhu, “Machine Learning Based Protection Scheme for Low Voltage AC Microgrids,” Energies (Basel), vol. 15, no. 24, pp. 1–19, 2022, doi: 10.3390/en15249397. DOI: https://doi.org/10.3390/en15249397

M. Bayat, M. M. Koushki, A. A. Ghadimi, M. Tostado-Véliz, and F. Jurado, “Comprehensive enhanced Newton Raphson approach for power flow analysis in droop-controlled islanded AC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 143, no. July, 2022, doi: 10.1016/j.ijepes.2022.108493. DOI: https://doi.org/10.1016/j.ijepes.2022.108493

L. F. Grisales-Noreña, J. C. Morales-Duran, S. Velez-Garcia, O. D. Montoya, and W. Gil-González, “Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations,” Results in Engineering, vol. 17, no. January, p. 100915, 2023, doi: 10.1016/j.rineng.2023.100915. DOI: https://doi.org/10.1016/j.rineng.2023.100915

R. Villafuerte, R. A. Villafuerte, J. Medina, and E. Mejía, “Aplicación de un Método Iterativo de dos Pasos para el Cálculo de Flujos de Potencia,” Informacion Tecnologica, vol. 28, no. 1, pp. 189–198, 2017, doi: 10.4067/S0718-07642017000100019. DOI: https://doi.org/10.4067/S0718-07642017000100019

CELEC EP, “Sistema de transmisión a 500 kV.” [Online]. Available: https://www.celec.gob.ec/transelectric/sistema-de-transmision-a-500-kv/