Development of a Computer Vision System for the Non-Destructive Detection of Bananas
Main Article Content
Abstract
Quality assessment in fresh fruits is essential to ensure their commercial value and reduce losses throughout the supply chain. This paper presents the development of a computer vision–based system for the non-destructive detection of bananas, aiming to automate the classification process according to ripeness. The YOLOv11 algorithm was trained with a dataset consisting of 824 banana images in different states (green, ripe, and overripe). The system was implemented on a conveyor belt, incorporating 3D-printed components and an automatic segregation mechanism. Experimental tests achieved a classification accuracy of 97.2%, validating the applicability of the proposed system in agro-industrial environments.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
D. Escobar Figueroa y E. Roa Guerrero, «Sistema de visión artificial para la identificación del estado de madurez de frutas (granadilla)», Redes de Ingeniería, vol. 7, n.o 1, pp. 78-86, jun. 2016, https://doi.org/10.14483/udistrital.jour.redes.2016.1.a08.
L. O. Villarreal Ger, «Prototipo para la detección y clasificación de productos alimenticios mediante visión artificial en base al color», Conectividad, vol. 5, n.o 2, pp. 46-62, feb. 2024, https://doi.org/10.37431/conectividad.v5i2.129.
K. Yu et al., «Advances in Computer Vision and Spectroscopy Techniques for Non-Destructive Quality Assessment of Citrus Fruits: A Comprehensive Review», Foods, vol. 14, n.o 3, p. 386, ene. 2025, https://doi.org/10.3390/foods14030386.
R. Sucari León, Y. Aroquipa Durán, L. D. Quina Quina, y E. Quispe Yapo, «Visión artificial en reconocimiento de patrones para clasificación de frutas en agronegocios», PURIQ, vol. 2, n.o 2, abr. 2020, [En línea]. Disponible en: https://www.researchgate.net/publication/340571315_Vision_artificial_en_reconocimiento_de_patrones_para_clasificacion_de_frutas_en_agronegocios
G. Madasamy Raja, P. Selvaraju, P. Pathmanaban, y C. G. Manuvel Antony, «YOLOv11n for precision agriculture: lightweight and efficient detection of guava defects across diverse conditions», Journal of the Science of Food and Agriculture, vol. 105, n.o 11, pp. 6182-6195, may 2025, https://doi.org/10.1002/jsfa.14331.
G. Shanmugam, D. Balusamy, K. R. KavinSubash, S. Ajay, y K. Gokul, «Sustainable Agriculture with Advanced Plant Disease Detection using YOLOv11 and XAI», presentado en 2025 IEEE 14th International Conference on Communication Systems and Network Technologies (CSNT), Bhopal, India, mar. 2025, pp. 598-603. https://doi.org/10.1109/CSNT64827.2025.10968901.
M. Al Husaini, A. R. Raharja, V. H. C. Putra, y H. H. Lukmana, «Enhanced Plant Disease Detection Using Computer Vision YOLOv11: Pre-Trained Neural Network Model Application», Journal of Computer Networks, Architecture and High Performance Computing, vol. 7, n.o 1, pp. 82-95, 2025.
A. Fahriansyah, P. M. El Zaky, L. Novamizanti, y S. Sa’idah, «YOLOv11 for Classification of Strawberry Quality and Ripeness», presentado en 2025 IEEE International Conference on Artificial Intelligence for Learning and Optimization (ICoAILO), Bali, Indonesia, ago. 2025, pp. 93-99. https://doi.org/10.1109/ICoAILO66760.2025.11156057.
S. M. Shendkar, R. V. Shimpi, A. S. Todmal, C. Sukte, P. Futane, y M. Kodmelwa, «Utilizing YOLOv10 and YOLO11 for Tomato Ripeness Detection in Vertical Farming», Advances in Nonlinear Variational Inequalities, vol. 28, n.o 5s, pp. 290-302, ene. 2025, https://doi.org/10.52783/anvi.v28.3905.
A. B. Shaik, A. K. Kandula, G. K. Tirumalasetti, B. Yendluri, y H. K. Kalluri, «Comparative Analysis of YOLOv11 and YOLOv12 for Automated Weed Detection in Precision Agriculture», presentado en 2025 5th International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, may 2025, pp. 787-793. https://doi.org/10.1109/ICPCSN65854.2025.11036078.
A. C. Ferreira et al., «Aplicando o Modelo YOLOv11 para Detectar e Segmentar Viveiros de Camarão em Imagens Georreferenciadas», presentado en XVI Workshop de Computação Aplicada à Gestão do Meio Ambiente e Recursos Naturais, Maceió, Brasil: SBC, jul. 2025, pp. 30-38. https://doi.org/10.5753/wcama.2025.7190.
L. Pencue-Fierro y J. León Téllez, «Detección y clasificación de defectos en frutas mediante el procesamiento digital de imágenes», Revista Colombiana de Física, vol. 35, n.o 1, enero de 2003. [En línea]. Disponible en: https://www.researchgate.net/publication/238095132_Deteccion_y_clasificacion_de_defectos_en_frutas_mediante_el_procesamiento_digital_de_imagenes
Ultralytics, «YOLOv11 Documentation». Accedido: 22 de mayo de 2025. [En línea]. Disponible en: https://docs.ultralytics.com/es/models/yolo11
J. Redmon, S. Divvala, R. Girshick, y A. Farhadi, «You Only Look Once: Unified, Real-Time Object Detection», 9 de mayo de 2016, arXiv:1506. Accedido: 22 de mayo de 2025. [En línea]. Disponible en: https://arxiv.org/abs/1506.02640
I. Goodfellow, Y. Bengio, y A. Courville, Deep Learning. en Adaptive Computation and Machine Learning series. MIT Press, 2016. [En línea]. Disponible en: https://mitpress.mit.edu/9780262035613/deep-learning/
E. Saldaña, R. Siche, M. Luján, y R. Quevedo, «Review: computer vision applied to the inspection and quality control of fruits and vegetables Review: computer vision applied to the inspection and quality control of fruits and vegetables», Brazilian Journal of Food Technology, vol. 16, n.o 4, diciembre de 2013. [En línea]. https://doi.org/10.1590/S1981-67232013005000031
L. Yang et al., «Automatic Detection of Banana Maturity—Application of Image Recognition in Agricultural Production», Processes, vol. 12, n.o 4, p. 799, abril de 2024.
R. E. Saragih, A. R. Purnajaya, I. Syafrinal, Y. Pernando, y Yodi, «Mango and Banana Ripeness Detection based on Lightweight YOLOv8», Jurnal Buana Informatika, vol. 15, n.o 2, pp. 79-88, oct. 2024.