Desing and Implementation of an Autonomous Robot for Urban Gardening
Main Article Content
Abstract
This study presents the design and implementation of an autonomous robot for the care and maintenance of urban gardens, focusing on the automation of essential tasks such as sowing, irrigation, and plant monitoring. The system integrates mechanical, electronic, and control components to achieve efficient and precise operation adapted to horticultural environments. Equipped with sensors, the robot collects real-time data to dynamically adjust its actions, thereby optimizing plant growth and overall system performance. Its Cartesian-based mechanical structure allows accurate movement throughout the work area, while a graphical user interface enables real-time monitoring and remote control of both the crops and the robotic system. Experimental results confirm the robot’s ability to perform multiple automated tasks effectively, validating the functionality and reliability of the prototype. The proposed approach contributes to the development of sustainable urban agriculture and the promotion of green spaces through the application of open-source technologies and automation.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
J. Mercader, «“El impacto de la robótica y el futuro del trabajo”.», Revista de la Facultad de Derecho de México, vol. Tomo LXVII, n.o 269, 2017, [En línea]. Disponible en: www.revistas.unam.mx › index.php › rfdm › article › download
A. J. Pérez Vidal, Á. Castro-González, F. Alonso, J. C. Castillo, y M. Á. Salichs, «Evolución de la robótica social y nuevas tendencias», XXXVIII Jornadas de Automática, pp. 836-843, 2017, doi: https://doi.org/10.17979/spudc.9788497497749.0836.
B. I. Valverde Castro, «La importancia de la Robótica como eje en el desarrollo de la sociedad», Polo del Conocimiento: Revista científico - profesional, vol. 5, n.o 8, pp. 1368-1377, 2020.
GRUPO BANCO MUNDIAL, «Agricultura y alimentos», World Bank. [En línea]. Disponible en: https://www.bancomundial.org/es/topic/agriculture/overview
Agricultural Robotics & Automation Society - IEEE, «Robótica y automatización agrícola». [En línea]. Disponible en: https://www.ieee-ras.org/agricultural-robotics-automation
L. F. P. Oliveira, A. P. Moreira, y M. F. Silva, «Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead», Robotics, vol. 10, n.o 2, p. 52, mar. 2021, doi: 10.3390/robotics10020052.
H. Lin, S. Dong, Z. Liu, y C. Yi, «Study and Experiment on a Wheat Precision Seeding Robot - Haibo - 2015 - Journal of Robotics - Wiley Online Library», Jornal of Robotics, vol. 2015, n.o 1, p. 696301, 24 de noviembre de 2015.
S. Sukkarieh, «Mobile on-farm digital technology for smallholder farmers», presentado en Crawford Fund 2017: Transforming Lives and Livelihoods: The Digital Revolution in Agriculture, 7-8 August 2017, AgEcon, ago. 2017. doi: https://doi.org/10.22004/ag.econ.266635.
M. U. Hassan, M. Ullah, y J. Iqbal, «Towards autonomy in agriculture: Design and prototyping of a robotic vehicle with seed selector», presentado en 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI), Rawalpindi, Pakistan, nov. 2016, pp. 37-44. doi: 10.1109/ICRAI.2016.7791225.
I. P. Ferreira Silva y K. Resende Mendoça, «PROTÓTIPO DE UM ROBÔ CARTESIANO PARA A APLICAÇÃO EM AGRICULTURA», Actas del XXIV Congreso Brasileiro de Automática. [En línea]. Disponible en: https://sba.org.br/open_journal_systems/index.php/cba/article/view/3190/2718
H. M. Torres, I. A. Cordero, y F. D. Salgado, «Implementation of a Cartesian Robot XYZ for the Control of Agricultural Parameters in Seed Germination», en 2022 IEEE ANDESCON, Barranquilla, Colombia, nov. 2022, pp. 1-6. doi: 10.1109/ANDESCON56260.2022.9989747.
J. Cornejo, R. Palomares, M. Hernández, D. Magallanes, y S. Gutierrez, «Mechatronics Design and Kinematic Simulation of a Tripteron Cartesian-Parallel Agricultural Robot Mounted on 4-Wheeled Mobile Platform to Perform Seed Sowing Activity», presentado en 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Trichy, India, feb. 2022, pp. 1-7. doi: 10.1109/ICEEICT53079.2022.9768422.
C. J. Choque Moscoso, E. M. Fiestas Sorogastúa, y R. S. Prado Gardini, «Efficient Implementation of a Cartesian Farmbot Robot for Agricultural Applications in the Region La Libertad-Peru», presentado en 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 2018, pp. 1-6. doi: doi:10.1109/ANDESCON.2018.8564607.
Schneider Electric Company, «Lexium Cartesian Robots», World Bank. [En línea]. Disponible en: https://download.schneider-electric.com/files?p_Doc_Ref=DIA7ED2210101EN&p_enDocType=Catalog&p_File_Name=Catalog+Lexium+Cartesian+Robots_November+2021.pdf
M. V. Pilco Núñez y J. Achachi, «Impacto de la Inteligencia Artificial en las Actividades Humanas: Un análisis de las consecuencias | CONECTIVIDAD», vol. 6, n.o 1, pp. 256-270, 2025.
A. Ultreras-Rodríguez, M. T. de J. De La Paz-Rosales, J. D. Santana-Alaniz, y A. G. Ramírez-Ortega, «Inteligencia artificial y su impacto en la automatización del trabajo en México | Revista Arbitrada Interdisciplinaria Koinonía», Revista Arbitrada Interdisciplinaria Koinonía, vol. 10, n.o 19, pp. 4-25, 2025, doi: https://doi.org/10.35381/r.k.v10i19.4364.