Synchrophasor Simulation With Virtual PMUs in Power System for Off-Line Studies
Main Article Content
Abstract
One of the main components that make up the wide area monitoring system (WAMs) are the Phasor Measurement Units (PMUs), devices that allow dynamic analysis of the state of the electrical system, these devices allow phasor estimation representing the magnitudes of voltage and current angles and guaranteeing by means of time synchronization and sampling frequency to visualize the system in real time and compare phasors measured at different points of the network. This study presents a dynamic monitoring platform with PMUs for a two-area power system, the approach starts with the development and verification of a reference model example 12.6 (P. Kundur, Power system stability and control), simulated in DIgSILENT PowerFactory software, then a dynamic study is performed by implementing disturbance events in order to extract data of voltages and currents in magnitude and angle, in addition, an algorithm is implemented using Python software that serves as a virtual PMU for reading and sending data recorded through a fictitious ip network that will be extracted by the Pyscript software for viewing and use of data for monitoring, also shows the dynamic monitoring synchrophasor by PMU Connection Tester software that communicates through the virtual ip sent from Python, as a result the response graph is obtained by displaying angles of virtual PMUs.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Z. Huang et al., “Performance evaluation of phasor measurement systems,” IEEE Power Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, pp. 1–7, 2008, doi: 10.1109/PES.2008.4596880.
A. Shaobu Wang, Renke Huang , Xinda Ke, Junbo Zhao, Rui Fan, Hong Wang, Zhenyu Huang and D. V. Sathanur, “Risk-oriented PMU placement approach in electric power systems,” vol. 14, no. 2, pp. 301–307, 2019, doi: 10.1049/iet-gtd.2019.0957.
C. Mishra, K. D. Jones, A. Pal, and V. A. Centeno, “Binary particle swarm optimisation-based optimal substation coverage algorithm for phasor measurement unit installations in practical systems,” IET Gener. Transm. Distrib., vol. 10, no. 2, pp. 555–562, 2016, doi: 10.1049/iet-gtd.2015.1077.
A. DelaTorre, “Análisis técnico para la Implementación de un Sistema de Monitoreo de Área Extendida (Wams) en el Sistema Nacional Interconectado del Ecuador,” Universidad Politécnica Salesiana sede Quito, 2013.
A. G. Phadke, “Synchronized phasor measurements a historical overview -,” pp. 476–479, 2002.
A. Jovičić, “COMPUTAT IONALLY EFF ICI ENT STATE ESTIMATION FOR POWER SYSTEMS WITH CONVENTIONAL AND SYNCHROPHASOR MEASUREMENTS,” University of Belgrade, 2021.
S. C. G. Cruz, “Esquema de Monitoreo Integrado de Seguridad de Sistemas de Potencia,” Universidad de los Andes, 2016.
U. Kerin, G. Bizjak, R. Krebs, E. Lerch, and O. Ruhle, “Faster than real time: Dynamic security assessment for foresighted control actions,” 2009 IEEE Bucharest PowerTech Innov. Ideas Towar. Electr. Grid Futur., pp. 1–7, 2009, doi: 10.1109/PTC.2009.5282087.
I. Chychykina, Z. A. Styczynski, C. O. Heyde, and R. Krebs, “Power system instability prevention and remedial measures with online Dynamic Security Assessment,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232303.
Diego Aguas, “Implementación de una plataforma de simulación digital en tiempo real para entrenamiento de operadores ante fenómenos dinámicos,” ESCUELA POLITÉCNICA NACIONAL, 2020.
D. Pérez Llamuca, “Herramienta computacional en software libre para conversión de bases de datos del sistema eléctrico de potencia entre diferentes plataformas de simulación,” 2021. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/21575?mode=full
IEEE, IEEE Std 1344-1995(R2001) : IEEE Standard for Synchrophasers for Power Systems., vol. 1995. 1995.
IEEE Power Engineering Society, IEEE Std C37.118-2005, vol. 2005, no. March. 2005. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=660853
IEEE-SA Standards Board, IEEE Standard for Synchrophasor Measurements for Power Systems, vol. C37.118.1TM, no. December. 2011.
P. System, R. Committee, I. Power, and E. Society, “IEEE Standard for Synchrophasor Measurements for Power Systems -- Amendment 1: Modification of Selected Performance Requirements,” IEEE Std C37.118.1a-2014 (Amendment to IEEE Std C37.118.1-2011), vol. 2014, pp. 1–25, 2014.
K. Sato, Z. Yamazaki, T. Haba, N. Fukushima, K. Masegi, and H. Hayashi, “Dynamic simulation of a power system network for dispatcher training,” IEEE Trans. Power Appar. Syst., vol. PAS-101, no. 10, pp. 3742–3750, 1982, doi: 10.1109/TPAS.1982.317059.
P. Brogan, J. Morrow, R. Best, and D. Laverty, “Python PSS/E simulation to test efficacy of proposed PMU based WAMS and potential WAMPAC applications,” Proc. Univ. Power Eng. Conf., pp. 1–5, 2013, doi: 10.1109/UPEC.2013.6714952.
T. Kataoka, M. Shitsukawa, and A. Tajimi, “Improvement in coordinated restoration operation skills covering more than one area (Developing a power system operation training simulator that precisely reproduces electrical phenomena),” 44th Int. Conf. Large High Volt. Electr. Syst. 2012, 2012.
M. R. Hasan, L. Vanfretti, W. Li, and N. A. Khan, “Generic high level VSC-HVDC grid controls and test systems for offline and real time simulation,” 9th Int. 2014 Electr. Power Qual. Supply Reliab. Conf. PQ 2014 - Proc., pp. 57–64, 2014, doi: 10.1109/PQ.2014.6866784.
G. J. Araque and R. Barba, “Unidades de Medición Fasorial - PMU,” pp. 247–253, 2010.
G. Rivera and A. D. La Torre, “Estrategias para la Implementación de un Sistema de Monitoreo de Área Extendida WAMS en el Sistema Nacional Interconectado del Ecuador,” Rev. Técnica “Energía,” vol. 9, no. 1, pp. 34–43, 2013, doi: 10.37116/revistaenergia.v9.n1.2013.134.
R. C. H. Lara, “Herramientas de Software Libre para Aplicaciones en Ciencias e Ingeniería,” Rev. Politécnica, vol. 32, no. 1, pp. 1–8, 2013, [Online]. Available: http://revistapolitecnica.epn.edu.ec/ojs2/index.p
A. Villamarín, and D. Espín, “Diseño e Implementación de un Prototipo de Unidad de Medición, Fasorial (PMU - Phasor Measurement Unit) para el Monitoreo, Control y Protección de Sistemas Eléctricos”. Revista Técnica “energía” No. 11, pp. 127–135, 2015.
E. Arconel, “REGULACIÓN No. ARCONEL – 003/16 Requerimientos para la supervisión y control en tiempo real del Sistema Nacional Interconectado,” pp. 1–27, 2016.
L. Bonilla and R. Cubillo, “Determinación de límites de seguridad estática de ángulo en el SNI a partir de mediciones sincrofasoriales,” Rev. Técnica “Energía,” vol. 15, no. 1, pp. 90–97, 2018.
P. M. Pozo, I. A. Pozo, and N. A. Pozo, “Design and Construction of a Low-Cost Phasor Measurement Unit ( PMU ) for Three-Phase Distribution Power Systems according to the norm IEEE Diseño e Implementación de una ( PMU ) de baja potencia para Sistemas,” no. 16, pp. 8–16, 2019.
L. L. Chiza, “Co-simulation between PowerFactory and Matlab / Simulink for the simulation of an HVDC link integrated to the 39-bus system Co-simulación entre PowerFactory y Matlab / Simulink para la simulación de un enlace HVDC integrado al sistema de 39 barras,” no. 19, pp. 150–157, 2022.
R. Franco, “Uso de Sincrofasores para la Detección de Oscilaciones de Potencia y Pérdida de Sincronismo . Aplicación al Sistema Eléctrico Uruguayo para la Separación Controlada en Islas .,” Universidad de la República de Uruguay, 2012.
F. Gonzalez Longatt, “DIgSILENT PowerFactory ( Manual de Usuario),” no. April, pp. 1–2, 2004, [Online]. Available: file:///C:/Users/Personal/Downloads/Manual_de_Usuario_DIgSILENT_Parte_I.pdf
R. Gonzá and Lez, Python Para todos. 2015.
Marta Pérez Domínguez, “Extensión de Aplicaciones mediante Python embebido,” ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA Y SISTEMAS DE TELECOMUNICACIÓN, 2017.
P. Kundur, “Power System Stability and Control - Prabha Kundur - McGraw-Hill Education.” p. 1176, 1994. [Online]. Available: https://www.mheducation.co.in/html/9780070635159.html