Replacement of the red dye 40 with anthocyanins in jams; influence on color and rheological properties.
DOI:
https://doi.org/10.29166/quimica.v7i1.2592Keywords:
zone of hysteresis, rheological properties, dye red 40, anthocyanin dye, copigmentsAbstract
The effect on color and rheological properties was determined by replacing red 40 synthetic dye with anthocyanin dye and copigments in a jam formulation. A jam base was prepared with a standardized methodology and unitary formula. The dyes were added varying their concentration between 200 and 800 ppm; that is, the study factors were the type of dye and its concentration and the response variables the color and the area of hysteresis. It was established that the type of dye used did not have statistical significance on color, because the interaction of the copigment in a matrix with 46.75% of water discourages the equilibrium of the interaction forces between the anthocyanin and the rosmarinic acid that form the copigment. Otherwise, the interaction effect generated by the concentration and type of dye has statistical significance in the hysteresis area. Thus, The Rheology allowed to determine that the addition of dyes increases the hysteresis area; in the other words, it favors the destruction of the system when subjected to efforts. However, it could have industrial applicability, since were not observed hysteresis ties, that would mean the irreversible destruction of the product.
Downloads
References
Lee, S. M., Lee, K. T., Lee, S. H., & Song, J. K. (2013). Origin of human colour preference for food. Journal of Food Engineering, 119(3), 508–515. https://doi.org/10.1016/j.jfoodeng.2013.06. 021
McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., Kitchin, E., Lok, K., Porteous, L., Prince, E., Sonuga-Barke, E., Warner, J. O., & Stevenson, J. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9- year-old children in the community: a randomised, double-blinded, placebo- controlled trial. Lancet, 370(9598), 1560– 1567.https://doi.org/10.1016/S0140- 6736(07)61306-3
Chavez-Bravo, E., Alonso-Calderon, A. I. A., Sanchez-Calvario, L., Castaneda- Roldan, E., Vidal Robles, E., & Salazar- Robles, G. (2016). Characterization of the degradation products from the red dye 40 by enterobacteria. Journal of Pure and Applied Microbiology, l0(4), 2569–2575. https://doi.org/10.22207/JPAM.10.4.12
Krikorian, R., Kalt, W., McDonald, J. E., Shidler, M. D., Summer, S. S., & Stein, A.
L. (2020). Cognitive performance in relation to urinary anthocyanins and their flavonoid- based products following blueberry supplementation in older adults at risk for dementia. Journal of Functional Foods, 64(July), 103667.
https://doi.org/10.1016/j.jff.2019.103667
Fakhri, S., Khodamorady, M., Naseri, M., Farzaei, M. H., & Khan, H. (2020). The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacological Research, 104895.
https://doi.org/10.1016/j.phrs.2020.104895
Swer, T. L., Chauhan, K., Mukhim, C., Bashir, K., & Kumar, A. (2019). Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing.
Lwt, ll4(July), 108360. https://doi.org/10.1016/j.lwt.2019.108360
Vernon-Carter, E. J., Alvarez-Ramirez, J., Bello-Perez, L. A., Gonzalez, M., Reyes, I., & Alvarez-Poblano, L. (2020). Supplementing white maize masa with anthocyanins: Effects on masa rheology and on the in vitro digestibility and hardness of tortillas. Journal of Cereal Science, 9l(September 2019), 102883.
https://doi.org/10.1016/j.jcs.2019.102883
Ertan, K., Türkyılmaz, M., & Özkan, M. (2020). Color and stability of anthocyanins in strawberry nectars containing various co- pigment sources and sweeteners. Food Chemistry, 3l0, 125856. https://doi.org/10.1016/j.foodchem.2019.12 5856
Martinsen, B. K., Aaby, K., & Skrede, G. (2020). Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry, 3l6,126297. https://doi.org/10.1016/j.foodchem.2020.12 6297
Joyner, H. S. (2018). Explaining food texture through rheology. Current Opinion in Food Science, 2l, 7–14. https://doi.org/10.1016/j.cofs.2018.04.003
Upadhyay, R., & Chen, J. (2020). Rheology and tribology assessment of foods. In Biopolymer-Based Formulations. Elsevier Inc. https://doi.org/10.1016/b978-0-12- 816897-4.00028-x
Suárez, M., & Narváez, G. (2016). Copigmentación intermolecular de antocianinas glicosiladas. Quito: editorial académica española.
P. Alvarado and D. Espinoza. (2013). Estudio investigativo de la frutila y su aplicacipon en la gastronomía.
Vega, R. (2016). Curso de diseño experimental y análisis estadístico. Quito, Ecuela Politécnica Nacional.
C. Campalani et al. (2020), “Supercritical CO2 as a green solvent for the circular economy: Extraction of fatty acids from fruit pomace,” J. CO2 Util., vol. 41, no. July, p. 101259, doi: 10.1016/j.jcou.2020.101259.
C. Vasco, K. Riihinen, J. Ruales, and A. Kamal-Eldin. (2009). “Chemical composition and phenolic compound profile of mortiño (vaccinium floribundum kunth),” J. Agric. Food Chem., vol. 57, no. 18, pp. 8274–8281, doi: 10.1021/jf9013586.
Zhao, X., Ding, B. W., Qin, J. W., He, F., & Duan, C. Q. (2020). Intermolecular copigmentation between five common 3-O- monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 326(17), 126960. https://doi.org/10.1016/j.foodchem.2020.12 6960
Kanha, N., Surawang, S., Pitchakarn, P., Regenstein, J. M., & Laokuldilok, T. (2019). Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Bioscience, 30(November 2018), 100419. https://doi.org/10.1016/j.fbio.2019.100419
López, G. (21 de noviembre de 2017). Criterios para la formulación de productos alimenticios. (D. Almachi, Entrevistador) Quito, Pichincha, Ecuador.
Fereyra, S. (2015). Estudio de prefactibilidad. Producción de confituras con integración sociolaboral. San Raael - Mendoza: Universidad Nacional del Cuyo.
Ramírez, R. (2013). Estudios de interacción fármaco-excipiente de antiinflamatorios no esteroideos formulados en matrices sol-gel por calorimetría diferenciasl de barrido. México D.F: Universidad Nacional Autónoma de México.
World of Rehology. (2017). Obtenido de Anton Pear GmbH.
Remington, A. (2003). Farmacia (Vol. 20). Bueno Aires: PANAMERICANA.
Sui, Xiaonan. Zhang, Yan. Jiang, Lianzhoou. Zhou, W. (2018). Anthocyanins in foods. In Antocyanins in food (Vol. 7, Issue 3). Elsevier. https://doi.org/10.1080/1040839760952720 7
Maestro, A. (2002). Reología de espesantes celulósicos para pinturas al agua. Barcelona: Universidad de Barcelona.
Gutiérrez, H., & Salazar, R. d. (2008). Análisis y diseño de esperimentos (Segunda edición ed.). México D.F: McGRAW HILL/INTERAMERICANA.
Badui, S. (2006). Química de Alimentos (Cuarta ed.). México D.F: Pearson.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Dennys Almachi Villalba, Martha Suárez Heredia, Pablo Bonilla Valladarez, Milene Díaz Basantes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los originales publicados en las ediciones impresa y electrónica de esta revista QUÍMICA CENTRAL son propiedad de la Universidad Central del Ecuador, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
La propiedad intelectual de los artículos publicados en revista QUÍMICA CENTRAL pertenece al/la/los/las autor/a/es/as, y los derechos de explotación y difusión científica están direccionados para la revista QUÍMICA CENTRAL mediante CARTA DE AUTORIZACIÓN DE PUBLICACIÓN publicada en esta plataforma.