La problemática ambiental de la contaminación lumínica: una revisión

Contenido principal del artículo

Víctor John Rueda-Punina
https://orcid.org/0000-0001-8564-2413

Resumen

La polución lumínica, catalogada como un tipo de degradación ambiental ha sido poco o nada estudiada en Ecuador, pero por el contrario, a nivel internacional ha contado con un amplio análisis, evidenciando sus efectos sobre la astronomía, energía, economía y seres humanos, pero también y principalmente sobre la naturaleza, encontrando como principal responsable a la luz artificial nocturna (ALAN) en todas sus presentaciones. El presente artículo empieza con una breve revisión de la teoría relacionada a contaminación lumínica. Después se presentan los resultados de las investigaciones científicas realizadas en la última década (2012 – 2022) sobre los efectos de esta problemática en la flora y fauna existente a nivel internacional. Se presenta también una recopilación de las investigaciones llevadas a cabo a nivel nacional. Gracias a esto, se conoció los serios problemas que afronta la flora y fauna existente, debido a la interferencia directa o indirecta de ALAN en los procesos naturales de desarrollo, movimiento, reproducción, depredación y alimentación en diferentes especies de fauna y flora, encontrando, dentro del primer grupo, a los insectos y aves como los más afectados y estudiados. A nivel nacional, apenas 4 son los estudiados que han tratado de abordar esta problemática, mismos que han sido enfocados en insectos y mamíferos dentro de la fauna, pero han sido inexistentes los estudios en la flora. Existe un gran nicho de estudio para la academia, sector público y privado del país, cuyos resultados permitirían proponer la creación de políticas y normas específicas para este tipo de degradación ambiental. Se invita a las áreas antes mencionadas, a impulsar estudios interdisciplinarios que permitan conocer los efectos que ALAN esté provocando en la flora y fauna.

Descargas

Métricas

Visualizaciones del PDF
1,305
Visualizaciones del HTML
59
Visualizaciones de otros formatos
888

Detalles del artículo

Cómo citar
Rueda-Punina, V. J. . (2022). La problemática ambiental de la contaminación lumínica: una revisión. FIGEMPA: Investigación Y Desarrollo, 14(2), 111–123. https://doi.org/10.29166/revfig.v14i2.3733
Sección
Artículos
Biografía del autor/a

Víctor John Rueda-Punina, Universidad Politécnica Salesiana, Quito

Máster en Gestión Ambiental y Energética en las Organizaciones
Grupo de Investigación en Ecología y Gestión de los Recursos Naturales
Universidad Politécnica Salesiana, Quito, Ecuador
vrueda@ups.edu.ec
https://orcid.org/0000-0001-8564-2413

Citas

Adrián Agea, R. (2013) Estudio piloto sobre la influencia de la luz artificial sobre la abundancia de especies de polillas y mariposas nocturnas en San Cristobal, Galapagos. Available at: http://repositorio.usfq.edu.ec/handle/23000/2643 (Accessed: 25 March 2022).

Arízaga Medina, R.E. and Cárdenas Pasato, L.E. (2020) Efecto de la luz artificial en la anidación de tortugas marinas en playas del Cantón Puerto López, Manabí, Ecuador. INNOVA Research Journal, 5(3.1), pp. 300–314. https://doi.org/10.33890/innova.v5.n3.1.2020.1512.

Bennie, J. et al. (2016) Ecological effects of artificial light at night on wild plants. Journal of Ecology, 104(3), pp. 611–620. https://doi.org/10.1111/1365-2745.12551.

Brüning, A. et al. (2016) Impact of different colours of artificial light at night on melatonin rhythm and gene expression of gonadotropins in European perch. The Science of the Total Environment, 543(Pt A), pp. 214–222. https://doi.org/10.1016/j.scitotenv.2015.11.023.

Camacho Cárdenas, L.F. (2015) Vulnerability of a jewel scarab (Coleoptera, Scarabaeidae, Rutelinae) in a highly fragmented light-polluted landscape in Ecuador. Pontificia Universidad Católica del Ecuador [Preprint]. Available at: http://repositorio.puce.edu.ec:80/xmlui/handle/22000/8736 (Accessed: 25 March 2022).

Carvajal, T., Benítez, D. and Angulo, Y. (2014) Sistema de Control mediante LabVIEW para analizar la Contaminación Lumínica Automotriz. MASKAY, 4(1), pp. 22–27.

Castell Orell, M. (2018) Efectos de la luz sobre el sueño en la tórtola collariza (Streptopelia risoria). Available at: http://dspace.uib.es/xmlui/handle/11201/145667 (Accessed: 24 March 2022).

Constitución de la República del Ecuador (CRE) (2008). https://www.registroficial.gob.ec/index.php/registro-oficial-web/publicaciones/registro-oficial/item/4864-registro-oficial-no-449.html (Accessed: 29 March 2022).

Cubas, J.M. and Puerta, J.C.G. (2020) Astronomía y desarrollo rural: II Universidad de Verano de Aras de los Olmos Ciencia y Desarrollo Rural. Universitat de València.

Dacke, M. et al. (2013) Dung Beetles Use the Milky Way for Orientation. Current Biology, 23(4), pp. 298–300. https://doi.org/10.1016/j.cub.2012.12.034.

Dominoni, D., Quetting, M. and Partecke, J. (2013) Artificial light at night advances avian reproductive physiology. Proceedings of the Royal Society B: Biological Sciences, 280(1756), p. 20123017. Available at: https://doi.org/10.1098/rspb.2012.3017.

Donoso, D. (2018) En Ecuador habitan al menos 300.000 especies de insectos. El Universo. Available at: https://www.eluniverso.com/noticias/2018/12/16/nota/7098345/ecuador-residen-menos-300000-especies-insectos (Accessed: 31 March 2022).

Durrant, J. et al. (2018) Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 330(4), pp. 225–233. Available at: https://doi.org/10.1002/jez.b.22810.

Falchi, F. et al. (2016) The new world atlas of artificial night sky brightness. Science Advances, 2(6), p. e1600377. https://doi.org/10.1126/sciadv.1600377.

Falcón, J. et al. (2020) Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems. Frontiers in Neuroscience, 14. Available at: https://www.frontiersin.org/article/10.3389/fnins.2020.602796 (Accessed: 21 March 2022).

Fankhauser, C. and Christie, J.M. (2015) Plant Phototropic Growth. Current Biology, 25(9), pp. R384–R389. https://doi.org/10.1016/j.cub.2015.03.020.

Ffrench-Constant, R.H. et al. (2016) Light pollution is associated with earlier tree budburst across the United Kingdom. Proceedings of the Royal Society B: Biological Sciences, 283(1833), p. 20160813. https://doi.org/10.1098/rspb.2016.0813.

Firebaugh, A. and Haynes, K.J. (2016) Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia, 182(4), pp. 1203–1211. https://doi.org/10.1007/s00442-016-3723-1.

Freile, J.F. and Poveda, C. (2019) Aves del Ecuador. Museo de Zoología, Pontificia Universidad Católica del Ecuador. Available at: https://bioweb.bio/faunaweb/avesweb/DiversidadBiogeografia/ (Accessed: 31 March 2022).

García, M.C. and Moreno, A. (2016) La Contaminación lumínica. Aproximación al problema en el barrio de Sants (Barcelona). Observatorio Medioambiental, 19, pp. 133–163. https://doi.org/10.5209/OBMD.54165.

Gaston, K.J., Visser, M.E. and Hölker, F. (2015) The biological impacts of artificial light at night: the research challenge. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1667), p. 20140133. https://doi.org/10.1098/rstb.2014.0133.

González Dorta, N. (2014) Influencia de la luz privada doméstica sobre la contaminación lumínica. Masters Thesis. Universitat Politècnica de Catalunya.

González-Madrigal, J., Solano-Lamphar, H. and Ramírez, M. (2020) La contaminación lumínica como aproximación a la planeación urbana de ciudades mexicanas. EURE (Santiago), 46(138), pp. 155–174. https://doi.org/10.4067/S0250-71612020000200155.

Hartmann, S. et al. (2018) Zebrafish larvae show negative phototaxis to near-infrared light. PLOS ONE, 13(11), p. e0207264. https://doi.org/10.1371/journal.pone.0207264.

Hölker, F. et al. (2010) The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy. Ecology and Society, 15(4). Available at: https://www.jstor.org/stable/26268230 (Accessed: 21 March 2022).

Humberg, T.-H. and Sprecher, S.G. (2017) Age- and Wavelength-Dependency of Drosophila Larval Phototaxis and Behavioral Responses to Natural Lighting Conditions. Frontiers in Behavioral Neuroscience, 11. Available at: https://www.frontiersin.org/article/10.3389/fnbeh.2017.00066 (Accessed: 23 March 2022).

Hussein, A.A.A. et al. (2021) Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. Environmental Science and Pollution Research International, 28(5), pp. 5036–5048. https://doi.org/10.1007/s11356-020-11824-7.

International Dark-Sky Association (no date) Light Pollution. Contaminación lumínica. Available at: https://bit.ly/3MQXhpp (Accessed: 15 February 2022).

Jong, M. de et al. (2016) Do Wild Great Tits Avoid Exposure to Light at Night?. PLOS ONE, 11(6), p. e0157357. https://doi.org/10.1371/journal.pone.0157357.

Knop, E. et al. (2017) Artificial light at night as a new threat to pollination. Nature, 548(7666), pp. 206–209. https://doi.org/10.1038/nature23288.

Kyba, C.C.M. et al. (2015) High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sensing, 7(1), pp. 1–23. https://doi.org/10.3390/rs70100001.

La Sorte, F.A. et al. (2017) Seasonal associations with urban light pollution for nocturnally migrating bird populations. Global Change Biology, 23(11), pp. 4609–4619. https://doi.org/10.1111/gcb.13792.

Lao, S. et al. (2020) The influence of artificial light at night and polarized light on bird-building collisions. Biological Conservation, 241, p. 108358. https://doi.org/10.1016/j.biocon.2019.108358.

Lin, K.-H. et al. (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, pp. 86–91. Available at: https://doi.org/10.1016/j.scienta.2012.10.002.

Liu, Z. et al. (2020) Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition. International Journal of Molecular Sciences, 21(2), p. 422. Available at: https://doi.org/10.3390/ijms21020422.

Malek, I. and Haim, A. (2019) Bright artificial light at night is associated with increased body mass, poor reproductive success and compromised disease tolerance in Australian budgerigars (Melopsittacus undulatus). Integrative Zoology, 14(6), pp. 589–603. https://doi.org/10.1111/1749-4877.12409.

Massetti, L. (2018) Assessing the impact of street lighting on Platanus x acerifolia phenology. Urban Forestry & Urban Greening, 34, pp. 71–77. https://doi.org/10.1016/j.ufug.2018.05.015.

McLaren, J.D. et al. (2018) Artificial light at night confounds broad-scale habitat use by migrating birds. Ecology Letters, 21(3), pp. 356–364. https://doi.org/10.1111/ele.12902.

McLay, L.K., Green, M.P. and Jones, T.M. (2017) Chronic exposure to dim artificial light at night decreases fecundity and adult survival in Drosophila melanogaster. Journal of Insect Physiology, 100, pp. 15–20. Available at: https://doi.org/10.1016/j.jinsphys.2017.04.009.

Meléndez Rua, L.P. (2015) Caracterización de la intensidad luminosa responsable de la contaminación lumínica en entornos urbanos. TDX (Tesis Doctorals en Xarxa) [Preprint]. Available at: https://upcommons.upc.edu/handle/2117/95810 (Accessed: 18 March 2022).

Novo Crespo, S. and Pastor Pérez, I. (2015) La contaminación lumínica: una trampa para las aves. Available at: https://minerva.usc.es/xmlui/handle/10347/14988 (Accessed: 18 March 2022).

Owens, A.C.S. et al. (2020) Light pollution is a driver of insect declines. Biological Conservation, 241, p. 108259. https://doi.org/10.1016/j.biocon.2019.108259.

Owens, A.C.S. and Lewis, S.M. (2018) The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecology and Evolution, 8(22), pp. 11337–11358. https://doi.org/10.1002/ece3.4557.

Perkin, E.K., Hölker, F. and Tockner, K. (2014) The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biology, 59(2), pp. 368–377. https://doi.org/10.1111/fwb.12270.

Quiñónez Macías, M.J. (2017) Diversidad y estado de conservación de murciélagos (mammalia: Chiroptera) en el Bosque Protector Cerro El Paraíso (Guayas-Ecuador) de mayo 2016 a junio 2017. Thesis. Universidad de Guayaquil, Facultad de Ciencias Naturales. Available at: http://repositorio.ug.edu.ec/handle/redug/21087 (Accessed: 25 March 2022).

Raap, T. et al. (2017) Disruptive effects of light pollution on sleep in free-living birds: Season and/or light intensity-dependent?. Behavioural Processes, 144, pp. 13–19. https://doi.org/10.1016/j.beproc.2017.08.011.

Randel, N. and Jékely, G. (2016) Phototaxis and the origin of visual eyes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1685), p. 20150042. https://doi.org/10.1098/rstb.2015.0042.

Reglamento Técnico Ecuatoriano RTE INEN 069 Alumbrado Público (2013). Available at: http://extranet.comunidadandina.org/sirt/sirtDocumentos/ECOTCR14116.pdf.

Rodríguez, A. et al. (2022) Tracking Flights to Investigate Seabird Mortality Induced by Artificial Lights. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.786557.

Russo, D. et al. (2019) Artificial illumination near rivers may alter bat-insect trophic interactions. Environmental Pollution, 252, pp. 1671–1677. https://doi.org/10.1016/j.envpol.2019.06.105.

Sánchez-González, K., Aguirre-Obando, O.A. and Ríos-Chelén, A.A. (2021) Urbanization levels are associated with the start of the dawn chorus in vermilion flycatchers in Colombia. Ethology Ecology & Evolution, 33(4), pp. 377–393. https://doi.org/10.1080/03949370.2020.1837963.

Sanders, D. et al. (2018) Low Levels of Artificial Light at Night Strengthen Top-Down Control in Insect Food Web. Current biology: CB, 28(15), pp. 2474-2478.e3. https://doi.org/10.1016/j.cub.2018.05.078.

Schroer, S. and Hölker, F. (2016) Impact of Lighting on Flora and Fauna, in R. Karlicek et al. (eds). Handbook of Advanced Lighting Technology. Cham: Springer International Publishing, pp. 1–33. https://doi.org/10.1007/978-3-319-00295-8_42-1.

Schumacher, J. (2017) How light affects the life of Botrytis. Fungal Genetics and Biology, 106, pp. 26–41. https://doi.org/10.1016/j.fgb.2017.06.002.

Seymoure, B.M. (2016) Heliconius in a new light: The effects of light environments on mimetic coloration, behavior, and visual systems. Arizona State University.

Seymoure, B.M. (2018) Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation. Insects, 9(1), p. 22. https://doi.org/10.3390/insects9010022.

Shi, L. et al. (2017) Adult Tea Green Leafhoppers, Empoasca onukii (Matsuda), Change Behaviors under Varying Light Conditions. PLOS ONE, 12(1), p. e0168439. https://doi.org/10.1371/journal.pone.0168439.

Somers-Yeates, R. et al. (2013) Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biology Letters, 9(4), p. 20130376. https://doi.org/10.1098/rsbl.2013.0376.

Spoelstra, K. et al. (2015) Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1667), p. 20140129. https://doi.org/10.1098/rstb.2014.0129.

Trouwborst, G. et al. (2016) Plasticity of photosynthesis after the “red light syndrome” in cucumber. Environmental and Experimental Botany, 121, pp. 75–82. https://doi.org/10.1016/j.envexpbot.2015.05.002.

Underwood, C.N., Davies, T.W. and Queirós, A.M. (2017) Artificial light at night alters trophic interactions of intertidal invertebrates. The Journal of Animal Ecology, 86(4), pp. 781–789. Available at: https://doi.org/10.1111/1365-2656.12670.

Voigt, C.C. et al. (2017) Migratory bats respond to artificial green light with positive phototaxis. PloS One, 12(5), p. e0177748. https://doi.org/10.1371/journal.pone.0177748.

Winger, B.M. et al. (2019) Nocturnal flight-calling behaviour predicts vulnerability to artificial light in migratory birds. Proceedings of the Royal Society B: Biological Sciences, 286(1900), p. 20190364. https://doi.org/10.1098/rspb.2019.0364.

Wittmann, C. and Pfanz, H. (2016) The optical, absorptive and chlorophyll fluorescence properties of young stems of five woody species. Environmental and Experimental Botany, 121, pp. 83–93. https://doi.org/10.1016/j.envexpbot.2015.05.007.

Wojciechowska, R. et al. (2016) Nitrate content in Valerianella locusta L. plants is affected by supplemental LED lighting. Scientia Horticulturae, 211, pp. 179–186. https://doi.org/10.1016/j.scienta.2016.08.021.