Bacterias multirresistentes en aguas de riego del río Chibunga, Chimborazo, Ecuador

Contenido principal del artículo

Dra. Morella Lucia Guillén Ferraro
https://orcid.org/0000-0002-5656-6332
Dra. María del Carmen Cordovéz Martínez
https://orcid.org/0000-0001-7155-8499
Dra. Ana Carolina González Romero
https://orcid.org/0000-0002-4899-6076
Dr. Gerardo Emilio Medina Ramírez
https://orcid.org/0000-0002-4782-7924
Llibrán Mur-Caicedo
Karen Gabriela Marcillo-Valencia
https://orcid.org/0009-0008-6904-0613

Resumen

El bienestar y desarrollo de los seres vivos depende de la calidad sanitaria y química del agua disponible. En los últimos años se ha venido observando la importancia del ambiente en la diseminación de bacterias resistentes y multirresistentes a los antibióticos, situación que ha colocado la problemática de la resistencia en un plano más amplio y que se está estudiando desde la perspectiva “One Health”. En este sentido, el objetivo del presente trabajo fue determinar la presencia de bacterias multirresistentes a los antibióticos en muestras de agua de riego provenientes del río Chibunga. Se recolectaron 14 muestras de agua de un volumen de 100 mL cada una, en envases estériles y de manera aséptica, las cuales fueron conservadas bajo refrigeración hasta su análisis en el laboratorio. Cada muestra fue sembrada por el método de siembra en superficie en los agares cistina electrolito deficiente, MacConkey, Salmonella-Shigella, tiosulfato citrato bilis sacarosa y agar sangre, incubándose en todos los casos a una temperatura de 37 °C durante un tiempo máximo de 48 horas. La identificación de las colonias bacterianas se realizó mediante pruebas fisiológicas y bioquímicas de acuerdo con los esquemas de identificación indicados por MacFaddin. El perfil de susceptibilidad a los antibióticos de las colonias identificadas se realizó por el método de difusión en disco de Kirby Bauer. Se lograron identificar 2 especies de bacterias multirresistentes, entre ellas, cepas de Morganella morganii y Plesiomonas shigelloides resistentes a antibióticos de uso clínico como ceftazidima, aztreonam, ciprofloxacino, ácido nalidíxico y trimetroprim-sulfametoxazol. Los resultados muestran que las aguas del río Chibunga albergan bacterias con multirresistencia a los antimicrobianos, representando un riesgo de contaminación de los productos agrícolas cosechados en sus inmediaciones, así como para las personas que utilizan estas aguas.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Guillén-Ferraro, M. L., Cordovéz-Martínez, M. del C. ., González-Romero, A. C., Medina-Ramírez, G. E., Mur-Caicedo, L., & Marcillo-Valencia, K. G. (2024). Bacterias multirresistentes en aguas de riego del río Chibunga, Chimborazo, Ecuador. FIGEMPA: Investigación Y Desarrollo, 17(1), 16–25. https://doi.org/10.29166/revfig.v17i1.5793
Sección
Artículos
Biografía del autor/a

Dra. Morella Lucia Guillén Ferraro, Universidad Nacional de Chimborazo. Riobamba, Ecuador

Universidad Nacional de Chimborazo. Escuela de Laboratorio Clínico. Facultad de Ciencias de la Salud. Riobamba-Ecuador. 

Dra. María del Carmen Cordovéz Martínez, Universidad Nacional de Chimborazo. Riobamba, Ecuador

Universidad Nacional de Chimborazo. Escuela de Laboratorio Clínico. Facultad de Ciencias de la Salud. Riobamba-Ecuador. 

Dra. Ana Carolina González Romero, Universidad Nacional de Chimborazo. Riobamba, Ecuador

Universidad Nacional de Chimborazo. Escuela de Laboratorio Clínico. Facultad de Ciencias de la Salud. Riobamba-Ecuador. 

Dr. Gerardo Emilio Medina Ramírez, Universidad Regional Autónoma de los Andes (UNIANDES). Ambato, Ecuador

Universidad Regional Autónoma de Los Andes. Carrera de Medicina/Facultad de Ciencias Médicas. Ambato-Ecuador

Llibrán Mur-Caicedo, Hospital General Marco Vinicio Iza. Lago Agrio, Ecuador

Hospital General Marco Vinicio Iza. Lago Agrio. Provincia de Sucumbíos-Ecuador

Karen Gabriela Marcillo-Valencia, Laboratorio de Diagnóstico Clínico Alianza. Lago Agrio, Ecuador

Laboratorio de Diagnóstico Clínico Alianza. Lago Agrio. Provincia Sucumbíos /Ecuador

Citas

Adesiyan, I. M., Bisi-Johnson, M. A., Ogunfowokan, A. O. and Okoh, A. I. (2019) Incidence and antimicrobial susceptibility fingerprints of Plesiomonas shigelloides isolates in water samples collected from some freshwater resources in Southwest Nigeria. Science of the Total Environment, 665, pp. 632-640. https://doi.org/10.1016/j.scitotenv.2019.02.062

Aguiar, H. G. M. V. (2021) Doenças causadas por enterobacteriaceae Morganella morganii e a resistência aos fármacos beta lactâmicos. Diseases caused by Enterobacteriaceae Morganella morganii and resistance to beta lactamic drugs. Brazilian Journal of Development, 7(12), pp. 112426-112439.

Aldová, E., Melter, O., Chyle, P., Slosarek, M. and Kodym, P. (1999) Plesiomonas shigelloides in water and fish. Cent. Eur. J. Public Health, 7 (4), pp. 172-175.

Alemu, G., Mama, G. and Siraj, M. (2018) Bacterial contamination of vegetables sold in Arba Minch Town, Southern Ethiopia. BMC Res Notes, 11, p. 775. https://doi.org/10.1186/s13104-018-3889-1.

Amos, G. C. A., Zhang, L., Hawkey, P. M., Gaze, W. H. and Wellington, E. M. (2014) Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes. Vet. Microbiol., 171, pp. 441–447.

Andueza, F., González, M., Ibáza, D., Vásquez, P., Viteri, F., Villacís, L., Araque, J., Escobar-Arrieta, S., González-Romero, A.C., Medina-Ramírez, G. and Álvarez, E. (2022) Diversity and profiles of resistance to antibiotic in species of the genus Aeromonas isolated from the aquatic ecosystems of Ecuador. Anales de la Real Academia de Farmacia, 88 (4), pp. 713-720. https://analesranf.com/articulo/8804_02/

Bandy, A. (2020) Ringing bells: Morganella morganii fights for recognition. Public Health, 182, pp. 45-50.

Baquero, F., Martínez, J.L. and Canton, R. (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol., 19, pp. 260–5

Bauer, A., Kirby, W., Sherry, J. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol., 45, pp. 493-496.

Calero-Cáceres, W. and Muniesa, M. (2016) Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res., 95, pp. 11e18. https://doi.org/10.1016/j.watres.2016.03.006.

Chen, X., Chen, Y., Yang, Q., Kong, H., Yu, F., et al. (2013) Plesiomonas shigelloides Infection in Southeast China. PLoS ONE, 8(11), e77877. Doi: 10.1371/journal.pone.0077877.

CLSI (2022) Performance standards for antimicrobial susceptibility testing Clinical and Laboratory Standards Institute Wayne, PA. 32 edition. USA.

Cohen, T. (2022) The Next Pandemic: A Pragmatic and Ethical Discussion About the Looming Threat of Antibiotic Resistance. Voices in Bioethics, 8. https://doi.org/10.52214/vib.v8i.9509

Cortés-Sánchez, A. D. J., Espinosa-Chaurand, L. D., Díaz-Ramírez, M. and Torres-Ochoa, E. (2021) Plesiomonas: A review on food safety, fish-borne diseases, and tilapia. The Scientific World Journal, 2021, 3119958. https://doi.org/10.1155/2021/3119958

Cruz, E.M. (2015) Antibióticos vs. resistencia bacteriana. Revista Electrónica Dr. Zoilo E. Marinello Vidaurreta, 40 (2), pp. 1-4

Dean, K. and Mitchell, J. (2022) Identifying water quality and environmental factors that influence indicator and pathogen decay in natural surface waters. Water Research, 211, 118051.

De Kraker, M.E.A., Stewardson, A.J. and Harbarth, S. (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 13, pp. e1002184.

Deng, D., Mu, Z., Lv, X., Jiang, X., Zhou, J., Guo, H. and Wei, Q. (2022) Pathogenicity of Plesiomonas shigelloides and Citrobacter freundii isolated from the endangered Chinese sturgeon (Acipenser sinensis). Microbial Pathogenesis, 173, pp. 105818.

Dimopoulos, G., Kollef, M. H. and Cohen, J. (2016) In 2035, will all bacteria be multiresistant? Yes. Intensive care medicine, 42, pp 2014-2016.

Durão, P., Balbontín, R. and Gordo, I. (2018) Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol., 26(8), pp. 677-691.

Elnaiem, A., Mohamed-Ahmed, O., Zumla, A., Mecaskey, J., Charron, N., Abakar, M. F. and Dar, O. (2023) Global and regional governance of One Health and implications for global health security. The Lancet, 401(10377), pp. 688-704.

Fang, H., Han, L., Zhang, H., Long, Z., Cai, L. and Yu, Y. (2018) Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. J. Hazard Mater., 357, pp. 53e62. https://doi.org/10.1016/j.jhazmat.2018.05.066.

Ferheen, I., Spurio, R., Mancini, L. and Marcheggiani, S. (2023) Detection of Morganella morganii bound to a plastic substrate in surface water. Journal of Global Antimicrobial Resistance, 32, pp. 104-107.

Forde, M., Izurieta, R., Ormeci, B., Arellano, M. and Mitchell, K. (2019) Agua y salud. En: Calidad del Agua en las Américas, Riesgos y oportunidades, pp. 29-38. UNESCO-PHI-IANAS-IAP-CODIA. Ciudad de México. México

González-Rey, C., Eriksson, L., Ciznar, I. and Krovacek, K. (2001) P25- Unexpected isolation of the “tropical” bacterial pathogen -Plesiomonas shigelloides- from lake water above the Polar Circle in Sweden. In: 7° Simposium on Aeromonas and Plesiomonas.

Grenni, P. (2022) Antimicrobial resistance in rivers: a review of the genes detected and new challenges. Environmental Toxicology and Chemistry, 41(3), pp 687-714.

Gurtler, J. B. and Gibson, K. E. (2022) Irrigation water and contamination of fresh produce with bacterial foodborne pathogens. Current Opinion in Food Science, 100889.

Hanna, N., Tamhankar, A. J. and Lundborg, C. S. (2023) Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: a systematic review and probabilistic environmental hazard assessment. The Lancet Planetary Health, 7(1), pp. e45-e54.

Hernando-Amado, S., Coque, T. M., Baquero, F. and Martínez, J. L. (2019) Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature microbiology, 4(9), pp 1432-1442.

Irannezhad, M., Ahmadi, B., Liu, J., Chen, D. and Matthews, J. H. (2022) Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustainable Horizons, 1, pp. 100005.

Janda, J.M., Abbott, S.L., and McIver, C.J. (2016) Plesiomonas shigelloides revisitad. Clin Microbiol Rev., 29, pp. 349–374. doi:10.1128/CMR.00103-15.

Jiao, Y.N., Chen, H., Gao, R.X., Zhu, Y.G. and Rensing, C. (2017) Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere, 184, pp. 53e61. DOI: 10.1016/j.chemosphere.2017.05.149

Jurado, C. D. and Yzarra, L. H. (2021) La calidad del agua potable y su influencia en la salud humana. GnosisWisdom, 1(3), pp. 11-20.

Kenneth, M. J., Koner, S., Hsu, G. J., Chen, J. S. and Hsu, B. M. (2023) A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. Environmental Pollution, 122643.

Kim, K. T., Lee, S. H. and Kwak, D. (2015) Prevalence, biochemical characteristics, and antibiotic susceptibility of Aeromonads, Vibrios, and Plesiomonads isolated from different sources at a zoo. Journal of Zoo and Wildlife Medicine, 46(2), pp. 298-305.

Laupland, K. B., Paterson, D. L., Edwards, F., Stewart, A. G. and Harris, P. N. (2022) Morganella morganii, an emerging cause of bloodstream infections. Microbiology Spectrum, 10(3), pp. e00569-22.

Levin, R. E. (2008) Plesiomonas shigelloides-An aquatic food borne pathogen: A review of its characteristics, pathogenicity, ecology, and molecular detection. Food Biotechnology, 22(2), pp 189-202.

Li, W. and Zhang, G. (2022) Detection and various environmental factors of antibiotic resistance gene horizontal transfer. Environmental Research, 212, 113267.

Liu, H., Zhu, J., Hu, Q. and Rao, X. (2016) Morganella morganii, a non-negligent opportunistic pathogen. International Journal of Infectious Diseases, 50, pp. 10-17.

López Cuaran, A.Y. (2019) Diagnóstico bacteriológico en productos agrícolas de la cuenca del río Chanchán. Tesis de pregrado. Universidad Nacional del Chimborazo. Riobamba. Ecuador.

MacFaddin, J. (2003) Pruebas Bioquímica individuales. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3a ed. Buenos Aires, Argentina: Editorial Médica Panamericana.

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T. and Monnet, D.L. (2012) Multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 18, pp 268-81.

Martins, A. F. M., Pinheiro, T. L., Imperatori, A., Freire, S. M., Sá-Freire, L., Moreira, B. M. and Bonelli, R. R. (2019) Plesiomonas shigelloides: A notable carrier of acquired antimicrobial resistance in small aquaculture farms. Aquaculture, 500, pp. 514-520.

Ministerio del Ambiente del Ecuador (2014) MAE recolecta 2 267 kg de desechos las riberas del río Chibunga, Chimborazo. Disponible en: https://www.ambiente.gob.ec/mae-recolecta-2-267-kg-de-desechos-las-riberas-del-río-chibunga-chimborazo/. [Consultado el 28/08/2023].

Murray Christopher, J. L., Shunji Ikuta, K., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A. and Han, C. (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399 (10325), pp. 629-655

O'Hara, C. M., Brenner, F. W. and Miller, J. M. (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clinical microbiology reviews, 13(4), pp. 534-546.

Poma, V., Mamani, N. and Iñiguez, V. (2016) Impact of urban contamination of the La Paz River basin on thermotolerant coliform density and occurrence of multiple antibiotic resistant enteric pathogens in river water, irrigated soil, and fresh vegetables. SpringerPlus, 22 (5), p. 499. DOI 10.1186/s40064-016-2132-6.

Pornsukarom, S. and Thakur, S. (2017) Horizontal dissemination of antimicrobial resistance determinants in multiple Salmonella serotypes following isolation from the commercial swine operation environment after manure application. Appl. Environ. Microbiol., 83 (20), pp. e01503e17. https://doi.org/10.1128/AEM.01503-17.

Ríos-Tobón, S., Agudelo-Cadavid, R. M. and Gutiérrez-Builes, L.A. (2017) Patógenos e indicadores microbiológicos de calidad del agua para consumo humano. Rev. Fac. Nac. Salud Pública, 35(2), pp. 236-247.

Salgado Erazo, C.M. (2018) Evaluación de resistencia de bacterias a los metales pesados, en la microcuenca del río Chibunga. Tesis de pregrado. Escuela Superior Politécnica de Chimborazo. Riobamba. Ecuador.

Schuetz, A. N. (2019) Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Seminars in Diagnostic Pathology, 36 (3), pp. 187-192. https://doi.org/10.1053/j.semdp.2019.04.012

Shin, S. P., Kim, J. H., Gómez, D. K., Choresca Jr, C. H., Han, J. E. and Park, S. C. (2009) Isolation and characterization of Morganella morganii from Asian water monitor Varanus salvator. Journal of veterinary clinics, 26(4), pp. 391-394.

UNESCO (2012) World Water Assessment Programme. The United Nations world water development report 4: managing water under uncertainty and risk. United Nations Educational Scientific and Cultural Organization, Paris. France. https://digitallibrary.un.org/record/3892696?ln=es#:~:text=The%20fourth%20edition%20of%20the,that%20a%20coordinated%20approach%20to

Veloz, N. and Carbonel, C. (2018) Evaluación de la calidad del agua de la microcuenca del río Chibunga-Ecuador en variaciones estacionales, periodo 2013-2017. Rev. del Instituto de Investigación FIGMMG-UNMSM, 21(42), pp. 13-26.

Wong, T.Y., Tsui, H.Y., So, M. K., Lai, J.Y., Lai, S.T., Tse, C.W. and Ng, T.K. (2000) Plesiomonas shigelloides infection in Hong Kong: retrospective study of 167 laboratory-confirmed cases. HKMJ., 6(4).

World Health Organization (WHO) (2022) A health perspective on the role of the environment in One Health. WHO Regional Office for Europe, Copenhagen. https://iris.who.int/bitstream/handle/10665/354574/WHO-EURO-2022-5290-45054-64214-eng.pdf?sequence=1&isAllowed=y

Yamaki, S., Omachi, T., Kawai, Y. and Yamazaki, K. (2014) Characterization of a novel Morganella morganii bacteriophage FSP1 isolated from river water. FEMS microbiology letters, 359 (2), pp. 166-172.

Zaric, R. Z., Jankovic, S., Zaric, M., Milosavljevic, M., Stojadinovic, M. and Pejcic, A. (2021) Antimicrobial treatment of Morganella morganii invasive infections: Systematic review. Indian journal of medical microbiology, 39(4), pp. 404-412.

Zhu, X., Wang, L., Zhang, X., He, M., Wang, D., Ren, Y. and Pan, H. (2022) Effects of different types of anthropogenic disturbances and natural wetlands on water quality and microbial communities in a typical black-odor river. Ecological Indicators, 136, 108613.