Encapsulation efficiency of carotenoid extracted from Capsicum annuum in Zein nanoparticles

Main Article Content

Martha Azucena Suárez Heredia, PhD
Yery Mateo Morillo Reinoso
José Augusto Rosero, PhD
Gabriela Johana Haro Morales
Marlon Agustín Ichau Espinoza

Abstract

Zein nanoparticles were synthesized to encapsulate carotenoids and determine the efficiency of the encapsulation under controlled experimental conditions. Carotenoids were quantitatively extracted from preconditioned samples of Capsicum annuum by cold agitation with chloroform. The total carotenoids, expressed as concentration of β−carotene, were quantified by spectrophotometric measurements, which were related to ASTA units of color. The zein nanoparticles were synthesized by the coacervation method and characterized by measurements of particle size, polydispersity and Z potential. The dye was encapsulated during the synthesis process. Using a complete factorial design 23 at 95% confidence, it was determined that the conditions in which the inclusion percentage of the dye in the zein nanoparticles is maximized, up to 88.94% were: zein concentration of 2%, temperature of 20 °C and pH 8.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Suárez Heredia, M. A., Morillo Reinoso, Y. M., Rosero, J. A., Haro Morales, G. J., & Ichau Espinoza, M. A. (2019). Encapsulation efficiency of carotenoid extracted from Capsicum annuum in Zein nanoparticles. FIGEMPA: Investigación Y Desarrollo, 7(1), 47–52. https://doi.org/10.29166/revfig.v1i1.1017
Section
Artículos
Author Biographies

Martha Azucena Suárez Heredia, PhD, Universidad Central del Ecuador. Quito, Ecuador

Professor of the Faculty of Chemical Sciences. Central University of Ecuador

José Augusto Rosero, PhD, Universidad Central del Ecuador. Quito, Ecuador

Professor of the Faculty of Engineering Physical and Mathematical Sciences

Gabriela Johana Haro Morales, Universidad Central del Ecuador. Quito, Ecuador

Student of the Faculty of Chemical Sciences

Marlon Agustín Ichau Espinoza, Universidad Central del Ecuador. Quito, Ecuador

Student of the Faculty of Chemical Sciences

References

Aqua Hoy. (2017). Portal de información de acuacultura. [Online] Disponible en: https://www.aquahoy.com/156-uncategorised/14796-mercado-mundial-de-carotenoidesalcanzara-us13-billones-para-el-2017.

Ashok Patel, E.B. (2010). Sodium Caseinate Stabilized Zein Colloidal Particles. Journal OJ agricultura and food chemistry, 12497-503.

Association of Oficial Analitical Chemists, Inc. (1984). Official Methods of Analysis. Arlington, USA.

Beatus, Y., Raziel, A., Rosenberg, M. & Kopelman, I. (1985). Spray-drying microencapsulation of paprika oleoresin. Lebensmittel-Wissenchaft und Technologie, 28-34.

Favaro, C., Santana, A., Monterrey, E. & Trindade., M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids, 336-40.

Fernández, J. (2009). Food hydrocolloids. Food hydrocolloids, 1, 427-32.

International Trade Center. (2016). Trade map estadísticas del comercio para el desarrollo internacional de las empresas. [Online] Disponible en: http://www.trademap.org/Country_SelProductCountry_TS

Martínez-Girón, J. & Ordóñez-Santos, E. (2015). Efecto del procesamiento térmico sobre el color superficial del pimentón rojo (Capsicum annuum), Variedad “Natal Y”. Biotecnología en el sector agropecuario y agroindustrial, 104-13.

Meléndez-Marínez, A., Vicario, I. & Heredia, F. (2004). Estabilidad de los pigmentos carotenoides en los alimentos. Archivos Latinoamericanos de Nutrición, 54(2), 1155-1158.

Meyers, S.P. (2000). Papel del carotenoide astaxantina en nutrición de especies acuáticas. In Memorias del IV Simposium Internacional de Nutrición Acuícola. México.

Palma Astudillo, M. (2013). Extracción de capsantina a partir de hojuelas de pimentón (Capsicum annuum l.) y estabilización por microencapsulación. Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas, 1-78.

Raula, J. & Eerikainen, H. (2004.) Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. International journal Pharmaceutics, 13-21.

Robert, P., Carlsson, R., Romero, N. & Masson, L. (2003). Stability of spray-drying encapsulated carotenoid pigments from Rosa Mosqueta (Rosa rubiginosa) oleores. Journal of the American Oil Chemists Śociety, 1115-1120.

Rodríguez, M.E. (2004). Micro encapsulation by spray drying of multiple emulsions containing carotenoids. Journal of Food Science, 351-59.

Rosenberg, M. & Lee, S. (2004). Water-insoluble, whey protein-based microspheres prepared by an all aqueous process. Journal of Food Science, 50-58.

Shukla, R. & Cheryan, M. (2001). Zein: the industrial protein from corn. Ind. Crops Prod., 171-192.

Singh, R. & Lillard, J. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 215-23.

Szente Lajos, K. (1998). Stabilization and Solubilization of Lipophilic Natural Colorants with Cyclodextrin. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry Netherlands.

Vega, R. (2016). Curso de diseño experimental y análisis estadístico. Quito: Escuela Politécnica Nacional.

Wang, I. (2008). Food biophysics. Food biophysics, 3, 174-81.

Xu, Y.X. & Hanna, M.A. (2006). Electrospray encapsulation of water-soluble protein with polylactide e effects of formulations on morphology, encapsulation efficiency and release profile of particles. International Journal of Pharmaceutics, 30-36.

Zhong, H. (2009). J Food process pres. J food process pre, 255-70.