Determinación de Factores que Afectan la Medición de los Niveles de Ruido y Aislamiento Acústico en una Cabina Insonorizada para Autopartes
Main Article Content
Abstract
At the final vehicle testing process, car assemblers perform checks of unwanted internal noise, and then eliminate them, in order to guarantee customer satisfaction. These tests are carried out at one hundred percent of the units. The noise measurements made by the assemblers are subjective and depend on hearing ability of the inector performing the test. All the units that are detected by the client are segregated and rejected. In the event that the percentage of units that have noise levels over the customer's standard, controlled shipments can be reached, which imply additional inspections, at the supplier's expense, at their facilities. Through the use of a soundproof chamber, the detection of products that do not meet the customer's standard is performed in the supplier's own plant, without the need to mount the part with noise in the vehicle. However, in order to simulate a process similar to that in a vehicle, factors that have an impact on noise measurement must be determined. In this project, the soundproof chamber was not built, but it was simulated with a computer program and calculations with a validated mathematical model of acoustic insulation for double walls, and by using the methodology of the design of experiments, they were simulated in the software each of the factors. To determine the combination of variables, a matrix design was used, with the help of statistical software. Materials were used in the simulation, which, due to their cost, can easily be found in the Ecuadorian market, so that this device can then be used in all the production plants of auto parts, so that the noise level is validated. Finally, this methodology was used to determine the factors that influence the measurement of noise in a low-cost soundproof booth in chamber to reduce airborne noise in the measurement environment
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
AATEPA. (2016). Libro blanco del poliuretano proyectado e inyectado. Madrid: AISLA, Asociación de Instaladores de Aislamiento.
Arunkumar, M.P., J. P., K. G., M. L. (2018). Vibro-acoustic response and sound transmission loss characteristics of truss core sandwich panel filled with foam. Aerospace Science and Technology, 1-11.
Barrionuevo, D. y Gonzales, J. (2012). Criterios Generales para el diseño de cámaras anecoicas. Córdoba: Universidad Tecnológica Nacional.
Dekustic (2017). Dekustik. [En línea] http://www.decustik.com/arxius/docs/1467280372_cast_Catalogo_decustik_2016_ES.pdf
Fu, T. y otros. (2018). An analytical study of sound transmission through stiffened double laminated composite sandwich plates. Aerospace Science and Technology, 92-104.
Hai, Z. (2019). A kind of soundproofed cabin suitable for automobile wind tunnel test. China, Patente nº CN209166834U.
Iac acoustics. (2019). https://www.industrialnoisecontrol.com [En línea] Available at: https://www.industrialnoisecontrol.com/products/acoustical-test-measurement-chambers [Último acceso: 20 nov 2019].
ISO. (1997). Acoustics -Sound absorbers for use in buildings -Rating of sound absorption. International Organization for Standardization.
ISO. (2013). UNE 717-1 Evaluación del aislamiento acústico en los edificios y de los elementos de construcción. Madrid: AENOR.
Ivey, J. (2018). Covered plastic acoustic enclosure. United States, Patente nº US20180124486A1.
Jie, K. L. & Huann, T. C. Y. K. Y. H. G. Y. (2017). Numerical analysis of transmission loss through various noise barrier. Proceedings of the International Conference on Vibration, Sound and System Dynamics, 60-64.
Jingyang, C. y Wanli (2018). A kind of intelligent hearing test soundproof room. China, Patente nº CN208073037U.
Jones, R. (1981). Field sound insulation of load-bearing sandwich panels for housing. Noise Control Engineering, 90-105.
Lehman Fernández, C. S. (2007). Revisión de los Algoritmos de Predicción del Aislamiento Proporcionado por Paredes Dobles: un Análisis. Valdivia: s.n.
Llopis Reyna, A., Uris Martínez, A. y Guillen Guillamón, I. (2010). Cálculo del índice de reducción sonora de ventanas con ruido laminar. Valencia: Dept. Física Aplicada. Universidad Politécnica de Valencia.
Rao, G., Frank, F. y Gardonio, P. (2006). Transmission of Sound through Partitions. A. Press, ed. Sound and Structural Vibration: Radiation, Transmission and Response, 2nd Edition. s.l.: s.n., pp. 277-373.
Recuero López, M. (2000). Ingeniería Acústica. Madrid: Paraninfo.
Renault. (2004). Normalisation Renault Automobiles.
Rossing, T. D. (2007). Handbook of Accoustics. Second ed. Standford: Springer.
Sharp, B. H. (1973). A study of techniques to increase the sound insulation of building elements. Wyle Laboratory Report No. WR 73-5.
Shiming, B. y otros. (2015). Modular home – use mini soundproof room. China, Patente nº CN204676935U.
Supacoustic. (2006). https://supawood.com.au/supawood-products/supacoustic. [En línea] Available at: https://supawood.com.au/technical-information/acoustics [Último acceso: 21-10-2017
Systems, N. S. (2017). http://www.noisestopsystems.co.uk. [En línea] Available at: http://www.noisestopsystems.co.uk/wall-soundproofing/nssw2-plus-soundproofing-wall-board?zenid=2d24d42dc-946c51a22cbac554e901f03
Yamazoe, S. y otros. (2019). Soundproof construction, soundproof enclosure and soundproof box. Japan, Patente nº JP6550523B1.