Fluid Production Prediction using Machine Learning in the Lower T of the Sacha Field

Main Article Content

Adrian Altamirano
https://orcid.org/0000-0001-7302-1118
Fernando Andrés Lucero-Calvache
https://orcid.org/0000-0003-4424-2688

Abstract

The purpose of this study is to predict the fluid production of the wells drilled during the year 2021 in the lower T sandstone in the Sacha field. The petrophysical and fluid information was considered for the construction of the model from a standard well using commercial software, which provides the analysis of well behavior. In parallel, using the Python programming language through Machine Learning, two algorithms were developed: one based on the pump intake pressure (PIP) data of the electric submersible pump (ESP), and another with PIP data and salinity of the reservoir formation water. The prediction of fluid production with respect to the real production, found an error of 2% with the commercial software while in the two simulations through Python an error of 10% and 0.5% was obtained respectively. In the case of gas production prediction, the real value is 0.07 MMSCFD, while the one obtained by simulation with commercial software is 0.41 MMSCFD. For the case of the first and second simulation with Python, a better approximation of 0.11 MMSCFD and 0.10 MMSCFD was obtained respectively. The increase of variables in Python allows the reduction of the percentage of error and increases the adjustment of the of fluid and gas production prediction, in this case the PIP of the BES and salinity of formation water.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Adrian Israel, & Lucero-Calvache, F. A. (2023). Fluid Production Prediction using Machine Learning in the Lower T of the Sacha Field. FIGEMPA: Investigación Y Desarrollo, 16(2), 70–78. https://doi.org/10.29166/revfig.v16i2.4542
Section
Artículos

References

Cass, S. (05 de Noviembre de 2019) IEEE Spectrum. Obtenido de IEEE Spectrum: https://spectrum.ieee.org/at-work/innovation/the-2018-top-programminglanguages.

Flores Urgilés, C. M. y Ortiz Amoroso, M. S. (2018) Revisión de algoritmos para la detección de valores atípicos. Killkana Técnica, 2(1), pp. 19–26. doi: 10.26871/killkana_tecnica.v2i1.287.

Hunter, J., & Dale, D. (05 de Nov de 2019) Matplotlib. Obtenido de Python plotting: https://matplotlib.org/.

Ibrahim, M., & Bilchick, K. (2021) Avanzado Método de aprendizaje automático para la predicción de la presión de cierre de la fractura, closureTime, permeabilidad y tiempo hasta regímenes de flujo tardío de DFIT. Unconventional resources technology conference.

Carrera Jácome, L. (2018) Analisis Nodal. Obtenido de https://es.scribd.com/document/393404481/Analisis-Nodal

Jami, O. (2019) Alternativas para optimizar el sistema Power Oil en la estación Shushuqui-. Quito.

MetaQuotes (04 de Noviembre de 2019) MetaQuotes. https://www.mql5.com/es/articles/497

Ministerio de Energía y Recursos Naturales no Renovables. (2019) Ministerio de Energía y Recursos Naturales no Renovables. Obtenido de Ministerio de Energía y Recursos Naturales no Renovables: https://www.recursosyenergia.gob.ec/

NumPy Community (05 de Noviembre de 2019) What is NumPy. https://numpy.org/doc/1.17/user/whatisnumpy.html.

PyData Development Team (05 de Noviembre de 2019) Package overview. https://pandas.pydata.org/pandas-docs/stable/.

Rahmanifard, H., & Plaksina, T. (2018) Application of artificial intelligence techniques in the petroleum industry: a review. USA.

Scikit-learn (09 de Noviembre de 2019) Scikit-Learm Machine Learning in Python. Obtenido de Scikit-Learm Machine Learning in Python: https://scikit-learn.org/stable/.

TensorFlow (2019 de Noviembre de 2019) Why TensorFlow. https://www.tensorflow.org/about.

Zhou, P. (2019) Production Data Analysis By Machine Learning.