Geogrids, an option for the reinforcement of soft soils under reinforced concrete structures
Main Article Content
Abstract
Construction professionals are at the forefront in reinforcing the soil with the use and application of methods and materials that help increase its bearing capacity, since one of the main causes of building collapse and settlement is soft soil. For this study, a five-story reinforced concrete building was designed using structural software and a soil-structure interaction analysis was performed. Immediate and differential settlements were calculated with the application of loads from the structure. Four reinforcement analysis models were considered: 1) without improvement; 2) with soil replacement; 3) with geogrids; and 4) with geogrids and footing width reduction. The bearing capacity was estimated using data from soil studies and material parameters from quarries near the study area in Portoviejo, Ecuador. An adaptation to the formulas of Meyerhof & Hanna (1978) was applied for the soil substitution alternative, while the formulas of Huang & Meng (1997) were used and applied for the geogrids. The aim of this analysis is to obtain a high bearing capacity value of the soil that leads to savings in foundation material and at the same time to achieve low numbers of settlements that are deduced to the safety of the structure. The results of the reinforcement in relation to the natural soil revealed a considerable increase for the geogrid alternatives compared to soil substitution, and a reduction in settlements. The percentages obtained after analysis and calculations demonstrate the benefits of using geogrids under this type of structure.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alvarado, K. (2018) Mapa de Microzonificación Geotécnico y Modelo Geológico-Geotécnico 3D de la Ciudad de Portoviejo (Tesis de pregrado) Escuela Politécnica Nacional, Ecuador. http://bibdigital.epn.edu.ec/handle/15000/19473
Bernal, J. (2005) Hormigón Armado, Zapatas. 1ª Ed. ISBN13 9789875840171. Argentina: Nobuko.
Bowles, J. (1997) Foundation Analysis and Design. Fifth Edition, Singapore: McGraw-Hill Science, Engineering. ISBN 0-07-912247-7
Das, B. M. (2009) Shallow Foundations: Bearing Capacity and Settlement. 2nd Edition, Estados Unidos: CRC Press. ISBN 1420070061
Das, B. M. (2011) Fundamentos de ingeniería de cimentaciones. Séptima edición, México: Cengage Learning.
Das, B. M. (2014) Fundamentos de ingeniería geotécnica. Cuarta edición, México: Cengage Learning.
DGAVS (2019) Documento Básico: Seguridad estructural Cimientos. España: Dirección General de Arquitectura, Vivienda y Suelo.
DGC (2009) Guía de cimentaciones en obras de carreteras. España: Dirección General de Carreteras.
Escuela Politécnica Nacional EPN TECH EP (2017) Estudio de la microzonificación sísmica del área urbana de Portoviejo y sus cabeceras parroquiales rurales, Ecuador. Realizado en conjunto con el Instituto Geofísico Ecuatoriano (IGEPN), la Fundación Venezolana de Investigación Sismológica (FUNVISIS), la Pontificia Universidad Católica del Ecuador y el GAD de Portoviejo. https://docplayer.es/87719388-Michael-schmitz-estudios-de-microzonificacion-sismica-en-quito-y-portoviejo-ecuador.html
González de Vallejo, L. (2002) Ingeniería Geológica. España: Pearson Educación.
Huang, C. & Meng, F. (1997) Deep footing and wide-slab effects on reinforced sandy ground. Journal of Geotechnical and Geoenvironmental Engineering, 123 (1), pp. 30-36. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(30)
Instituto Espacial Ecuatoriano [IEE] y Ministerio de Agricultura, Ganadería, Acuacultura y Pesca [MAGAP] (2012) Proyecto de Generación de Geoinformación a Escala 1: 25.000 a nivel nacional. Ecuador: Geoportal IGM. https://www.geoportaligm.gob.ec/descargas_prueba/portoviejo.html
Jiménez, J., De Justo, J. & Serrano, A. (1981) Geotecnia y cimientos II. Mecánica del suelo y de las rocas, España: Editorial Rueda. ISBN 8472070212
Koerner, R. (2005) Designing with geosynthetics. Fifth Edition, Estados Unidos: Pearson Prentice Hall.
Latha, G. & Somwanshi, A. (2009) Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27 (4), 281–294. https://doi.org/10.1016/j.geotexmem.2009.02.001
Meyerhof, G. & Hanna A. (1978.) Ultimate bearing capacity of foundation on layered soil under inclined load. Canadian Geotechnical Journal, 15 (4), 565-572. https://doi.org/10.1139/t78-060
Ministerio de Desarrollo Urbano y Vivienda [MIDUVI] (2014a) Norma Ecuatoriana de la Construcción: Peligro Sísmico Diseño Sismo Resistente. Ecuador. https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/
Ministerio de Desarrollo Urbano y Vivienda [MIDUVI] (2014b) Norma Ecuatoriana de la Construcción: Geotécnia y Cimentaciones. Ecuador. https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/7.-NEC-SE-GC-Geotecnia-y-Cimentaciones.pdf
Ministerio de Transporte y Obras Públicas [MTOP] (2013) Norma Ecuatoriana Vial. Volumen Nº 3 Especificaciones generales para la construcción de caminos y puentes. Ecuador. https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_3.pdf
Morrison, N. (1993) Interacción Suelo-Estructuras: Semi-espacio de Winkler (Tesis de maestría). Barcelona, España: Universidad Politécnica de Cataluña.
Sarmiento, J. (2017) Uso de geomallas y su importancia en la construcción de pavimentos en la provincia de Pisco, 2017 (Tesis de pregrado). Perú: Universidad Alas Peruanas. https://hdl.handle.net/20.500.12990/6655