Geogrids, an option for the reinforcement of soft soils under reinforced concrete structures

Main Article Content

Michael Sam Giler-Sánchez
https://orcid.org/0009-0007-9177-2207
Jean Alejandro Macías-García
https://orcid.org/0009-0004-0483-3234
Evangelos Manouris
https://orcid.org/0000-0002-7061-2569
Espín León Espín León
https://orcid.org/0000-0002-8298-7851

Abstract

Construction professionals are at the forefront in reinforcing the soil with the use and application of methods and materials that help increase its bearing capacity, since one of the main causes of building collapse and settlement is soft soil.  For this study, a five-story reinforced concrete building was designed using structural software and a soil-structure interaction analysis was performed. Immediate and differential settlements were calculated with the application of loads from the structure. Four reinforcement analysis models were considered: 1) without improvement; 2) with soil replacement; 3) with geogrids; and 4) with geogrids and footing width reduction. The bearing capacity was estimated using data from soil studies and material parameters from quarries near the study area in Portoviejo, Ecuador. An adaptation to the formulas of Meyerhof & Hanna (1978) was applied for the soil substitution alternative, while the formulas of Huang & Meng (1997) were used and applied for the geogrids. The aim of this analysis is to obtain a high bearing capacity value of the soil that leads to savings in foundation material and at the same time to achieve low numbers of settlements that are deduced to the safety of the structure. The results of the reinforcement in relation to the natural soil revealed a considerable increase for the geogrid alternatives compared to soil substitution, and a reduction in settlements. The percentages obtained after analysis and calculations demonstrate the benefits of using geogrids under this type of structure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Giler-Sánchez, M. S., Macías-García, J. A., Manouris, E., & Espín León, E. L. (2024). Geogrids, an option for the reinforcement of soft soils under reinforced concrete structures. FIGEMPA: Investigación Y Desarrollo, 17(1), 87–101. https://doi.org/10.29166/revfig.v17i1.5920
Section
Artículos
Author Biographies

Michael Sam Giler-Sánchez, Universidad Técnica de Manabí. Portoviejo, Ecuador

Graduated in Civil Engineering at the Technical University of Manabí.

Jean Alejandro Macías-García, Universidad Técnica de Manabí, Faculty of Mathematics, Physics and Chemistry, Civil Engineering Degree

Graduated in Civil Engineering at the Technical University of Manabí.

Evangelos Manouris, Universidad Técnica de Manabí, Faculty of Mathematics, Physics and Chemistry, Civil Engineering Degree

INSTRUCTION
Professional Third Level: UNIVERSITY OF PATRAS, POLITECHNICAL SCHOOL-FACULTY OF CIVIL ENGINEERING (PATRAS - GREECE), DEGREE: CIVIL ENGINEER, SENESCYT Registration: 3001164834.
MASTER: UNIVERSITY OF PATRAS, POLITECHNICAL SCHOOL-FACULTY OF CIVIL ENGINEERING (PATRAS - GREECE), Specialization: CIVIL ENGINEERING, SENESCYT Registration: 300184857.
MIEBRO TEE (Chamber of Engineers and Architects in Greece). Code 63635

WORK EXPERIENCE:
2. BASKO ATE- GREECE, Construction Manager, Construction of a shed with two workshops for the maintenance of the Telecommunication system of the Greek Army.
3. BASKO ATE- GREECE, Construction Manager, Completion of construction works of a construction shed E/n CH-47D (SINOOK Helicopters).
4. MECANOTEHNIKA ABETE - GREECE, Construction Manager, Construction of an aircraft shed (HANGER).
5. MECANOTEHNIKA ABETE - GREECE, Construction Manager, Construction of metal sheds in Athens Metro (office building, central engine room and train parking).
6. AIAS AE- GREECE, Project Manager, Project of 220 houses for the working class in Drama, Greece.
7. AIAS AE-GREECE, Project Manager, Project of 120 houses for the working class in Makrokomi, Greece. Termination of construction contract.
8. AIAS AE-GREECE, Project Manager, Project of 32 houses for the working class in Karpenisi, Greece, Contract expired.
9. PRIVATE WORKS, MANAGER, 183 studies and projects in Greece. Data in TEE (Chamber of Engineers and Architects in Greece).
10. PROFESSOR OF STRUCTURES IN TECHNICAL UNIVERSITY OF MANABI.

Espín León Espín León, Universidad Técnica de Manabí, Portoviejo, Ecuador

Mining Engineer and Master of Science at the Moscow Mining Polytechnic, currently MISIS. Member of TTE, Chamber of Engineers and Architects of Greece.
22 years in AKTOR, Civil Works Construction Company in Greece as a mining engineer in tunnel construction with projects up to 80.000.000 Euro. From 2009 to 2014 on an hourly basis as a Teacher of Spanish as a Foreign Language in private lessons with permission of the Greek Ministry of Education. Examiner for DELE oral and written exams in Greece. From 2006 to 2014.
Teacher of Geotechnics and Chemistry of Materials at the Eloy Alfaro University of Manabí. 2 years.
Lecturer in Civil Engineering at the Technical University of Manabí. Subjects of Geotechnics, Geology and foundations.

References

Alvarado, K. (2018) Mapa de Microzonificación Geotécnico y Modelo Geológico-Geotécnico 3D de la Ciudad de Portoviejo (Tesis de pregrado) Escuela Politécnica Nacional, Ecuador. http://bibdigital.epn.edu.ec/handle/15000/19473

Bernal, J. (2005) Hormigón Armado, Zapatas. 1ª Ed. ISBN13 9789875840171. Argentina: Nobuko.

Bowles, J. (1997) Foundation Analysis and Design. Fifth Edition, Singapore: McGraw-Hill Science, Engineering. ISBN 0-07-912247-7

Das, B. M. (2009) Shallow Foundations: Bearing Capacity and Settlement. 2nd Edition, Estados Unidos: CRC Press. ISBN‎ 1420070061

Das, B. M. (2011) Fundamentos de ingeniería de cimentaciones. Séptima edición, México: Cengage Learning.

Das, B. M. (2014) Fundamentos de ingeniería geotécnica. Cuarta edición, México: Cengage Learning.

DGAVS (2019) Documento Básico: Seguridad estructural Cimientos. España: Dirección General de Arquitectura, Vivienda y Suelo.

DGC (2009) Guía de cimentaciones en obras de carreteras. España: Dirección General de Carreteras.

Escuela Politécnica Nacional EPN TECH EP (2017) Estudio de la microzonificación sísmica del área urbana de Portoviejo y sus cabeceras parroquiales rurales, Ecuador. Realizado en conjunto con el Instituto Geofísico Ecuatoriano (IGEPN), la Fundación Venezolana de Investigación Sismológica (FUNVISIS), la Pontificia Universidad Católica del Ecuador y el GAD de Portoviejo. https://docplayer.es/87719388-Michael-schmitz-estudios-de-microzonificacion-sismica-en-quito-y-portoviejo-ecuador.html

González de Vallejo, L. (2002) Ingeniería Geológica. España: Pearson Educación.

Huang, C. & Meng, F. (1997) Deep footing and wide-slab effects on reinforced sandy ground. Journal of Geotechnical and Geoenvironmental Engineering, 123 (1), pp. 30-36. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(30)

Instituto Espacial Ecuatoriano [IEE] y Ministerio de Agricultura, Ganadería, Acuacultura y Pesca [MAGAP] (2012) Proyecto de Generación de Geoinformación a Escala 1: 25.000 a nivel nacional. Ecuador: Geoportal IGM. https://www.geoportaligm.gob.ec/descargas_prueba/portoviejo.html

Jiménez, J., De Justo, J. & Serrano, A. (1981) Geotecnia y cimientos II. Mecánica del suelo y de las rocas, España: Editorial Rueda. ISBN 8472070212

Koerner, R. (2005) Designing with geosynthetics. Fifth Edition, Estados Unidos: Pearson Prentice Hall.

Latha, G. & Somwanshi, A. (2009) Bearing capacity of square footings on geosynthetic reinforced sand. Geotextiles and Geomembranes, 27 (4), 281–294. https://doi.org/10.1016/j.geotexmem.2009.02.001

Meyerhof, G. & Hanna A. (1978.) Ultimate bearing capacity of foundation on layered soil under inclined load. Canadian Geotechnical Journal, 15 (4), 565-572. https://doi.org/10.1139/t78-060

Ministerio de Desarrollo Urbano y Vivienda [MIDUVI] (2014a) Norma Ecuatoriana de la Construcción: Peligro Sísmico Diseño Sismo Resistente. Ecuador. https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/

Ministerio de Desarrollo Urbano y Vivienda [MIDUVI] (2014b) Norma Ecuatoriana de la Construcción: Geotécnia y Cimentaciones. Ecuador. https://www.habitatyvivienda.gob.ec/wp-content/uploads/2023/03/7.-NEC-SE-GC-Geotecnia-y-Cimentaciones.pdf

Ministerio de Transporte y Obras Públicas [MTOP] (2013) Norma Ecuatoriana Vial. Volumen Nº 3 Especificaciones generales para la construcción de caminos y puentes. Ecuador. https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_3.pdf

Morrison, N. (1993) Interacción Suelo-Estructuras: Semi-espacio de Winkler (Tesis de maestría). Barcelona, España: Universidad Politécnica de Cataluña.

Sarmiento, J. (2017) Uso de geomallas y su importancia en la construcción de pavimentos en la provincia de Pisco, 2017 (Tesis de pregrado). Perú: Universidad Alas Peruanas. https://hdl.handle.net/20.500.12990/6655