Incorporation of Nanochitin in Cement Mortars: An Approach to Enhancing Durability and Sustainability
Main Article Content
Abstract
Abstract
This study explores the use of nanochitin extracted from crab shell waste to enhance the mechanical and durability properties of cement-based mortars. Nanochitin, a biopolymer derived from chitin, has been identified as a promising nanomaterial additive that improves compressive strength, cohesion, and workability of cementitious composites. The methodology involved the synthesis, characterization, and incorporation of nanochitin in mortars using Type N and Type HS cements. The mechanical performance was evaluated through uniaxial compression tests, permeability analysis, and microstructural characterization via Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The results indicate that nanochitin enhances hydration, contributing to an optimized cementitious matrix. The modified mortars exhibited higher compressive strength, reaching 9.18 MPa at 90 days in Type N cement. Furthermore, nanochitin demonstrated superior rheological properties, allowing for improved workability and water retention, particularly in arid environments. This study highlights the sustainability benefits of repurposing crab shell waste, aligning with circular economy principles and advancing the development of eco-friendly construction materials.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aher, P.D., Patil, Y. D., Waysal, S. M., and Bhoi, A. M. (2023) “Critical review on biopolymer composites used in concrete”, Materials Today: Proceedings [Preprint]. Available at: https://doi.org/10.1016/j.matpr.2023.07.212
Alvansaz, M.F., Arico, B.A. and Arico, J.A. (2022a) “Eco-friendly concrete pavers made with Silica Fume and Nanosilica Additions”, Ingenio, 5(1), pp. 34–42. Available at: https://doi.org/10.29166/ingenio.v5i1.3784
Alvansaz, M.F., Bombon, C. and Rosero, B. (2022b) “Estudio de la Incorporación de Nano Sílice en Concreto de Alto Desempeño (HPC)”, Ingenio, 5(1), pp. 12–21. Available at: https://doi.org/10.29166/ingenio.v5i1.3786
Alvansazyazdi, M., Alvarez-Rea, F., Pinto-Montoya, J., Khorami, M., Bonilla-Valladares, P.M., et al. (2023) “Evaluating the Influence of Hydrophobic Nano-Silica on Cement Mixtures for Corrosion-Resistant Concrete in Green Building and Sustainable Urban Development”, Sustainability, 15(21), p. 15311. Available at: https://doi.org/10.3390/su152115311
Alvansazyazdi, M., Farinango, D., et al. (2024a) “Exploring Crack Reduction in High-Performance Concrete: The Impact of Nano-Silica, Polypropylene, and 4D Metallic Fibers”, International Journal of Engineering & Technology Sciences, 2024, pp. 1–13. Available at: https://www.dspace.uce.edu.ec/handle/25000/33849
Alvansazyazdi, M., Figueroa, J., et al. (2024b) “Nano-silica in Holcim general use cement mortars: A comparative study with traditional and prefabricated mortars”, Advances in Concrete Construction, 17(3), pp. 135–150. Available at: https://www.dspace.uce.edu.ec/handle/25000/34945
Alvansazyazdi, M., Fraga, J., Torres, E., et al. (2024c) “Comparative Analysis of a mortar for plastering with hydraulic cement type HS incorporating nanoiron vs cement-based mortar for masonry type N”, International Journal of Engineering & Technology Sciences, 2024, pp. 1-12. Available at: https://jms.procedia.org/archive/IJETS_29/procedia_2024_2024_ijets-2405252112893.pdf
Alvansaz Yazdi, M.F., Zakaria, R., Mustaffar, M., Abd Majid, M. Z., Mohamad Zin, R., Ismail, M., and Yahya, K. (2014) “Bio-composite materials potential in enhancing sustainable construction”, Desalination and Water Treatment, 52(19–21), pp. 3631–3636. Available at: https://doi.org/10.1080/19443994.2013.854105
Cemento Selvalegre (2025) Campeon HS Granel. Available at: https://dev.selvalegre.com.ec/productos/granel/campeon-hs/
Construmatica (2018) Cemento Puzolánico. Available at: https://www.construmatica.com/construpedia/Cemento_Puzol%C3%A1nico
COPETO (2024) Agregados que cumplen las normas de calidad nacionales INEN y MOP; y la norma Internacional ASTM. Compañía Pétreos del Toachi. Available at: https://www.copeto.com.ec/a/index.php
Défaz Paredes, M. A. and Simbaña Cóndor, T. G. (2013) Diseño de un plan de marketing para la empresa Copeto Cía. Ltda. Dedicada a la explotación de materiales pétreos para la construcción en Santo Domingo de los Tsáchilas y su comercialización en la misma provincia. Tesis de grado. Universidad Politécnica Salesiana Sede Quito. Available at: https://dspace.ups.edu.ec/bitstream/123456789/5762/1/UPS-QT04009.pdf
Fu, Q., Zhao, X., Zhang, Z., Xu, W. and Niu, D. (2022) “Effects of nanosilica on microstructure and durability of cement-based materials”, Powder Technology, 404, p. 117447. Available at: https://doi.org/10.1016/j.powtec.2022.117447
Haider, M.M., Jian, G., Li, H., Miller, Q., Wolcott, M., Fernandez, C. and Nassiri, S. (2022a) “Impact of chitin nanofibers and nanocrystals from waste shrimp shells on mechanical properties, setting time, and late-age hydration of mortar”, Scientific Reports, 12(1), p. 20539. Available at: https://doi.org/10.1038/s41598-022-24366-4
Haider, M.M., Jian, G., Zhong, T., et al. (2022b) “Insights into setting time, rheological and mechanical properties of chitin nanocrystals- and chitin nanofiberscement paste”, Cement and Concrete Composites, (132), p. 104623. Available at: https://doi.org/10.1016/j.cemconcomp.2022.104623
Hielscher Ultrasonics (2024) Ultrasonic Mixing of Cement Paste For Concrete. Available at: https://www.hielscher.com/es/cement_paste_ultrasonic_mixing.htm
Holcim (2022) Cemento Holcim Maestro. Available at: https://www.holcim.com.ec/sites/ecuador/files/2022-10/holcim-maestro_ficha-tecnica.pdf
INEN (2009) Cemento Hidráulico. Determinación de la resistencia a la compresión de mortero en cubos de 50mm de arista. NTE INEN 488. Available at: https://es.scribd.com/document/239497923/Mortero-Res-Compresion-488
INEN (2010a) Áridos para uso en morteros para mampostería. Requisitos. NTE INEN 2536. Available at: https://studylib.es/doc/5449549/nte-inen-2536--%C3%A1ridos-para-uso-en-morteros-para?p=3
INEN (2010b) Mortero para unidades de mampostería. Requisitos. Available at: https://es.scribd.com/document/495075269/INEN-2518
INEN (2011) Requisitos de desempeño para cementos hidráulicos. NTE 2380. Available at: https://es.scribd.com/document/649128282/NORMA-2380-2-Requisitos-de-Desempeno
INEN (2012) Hormigón de cemento hidráulico. Agua para mezcla. Requisitos. Norma técnica ecuatoriana NTE INEN 2617. Available at: https://es.scribd.com/document/192763819/Agua-Para-Mezcla-2617-012
Klein, N.S., Bachmann, J., Aguado, A. and Toralles-Carbonari, B. (2012) “Evaluation of the wettability of mortar component granular materials through contact angle measurements”, Cement and Concrete Research, 42(12), pp. 1611–1620. Available at: https://doi.org/10.1016/j.cemconres.2012.09.001
Lee, S. et al. (2023) “Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications”, Advanced Materials, 35(4), e2203325. Available at: https://doi.org/10.1002/adma.202203325
Ma, H. and Li, Z. (2013) “Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms”, Construction and Building Materials, 47, pp. 579–587. Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.048
Marcondes, C.G.N., Medeiros, M.H.F., Marques Filho, J. and Helene, P. (2015) “Nanotubos de carbono en concreto de cemento Portland. Influencia de la dispersión en las propiedades mecánicas y en la absorción de agua”, Revista ALCONPAT, 5(2), pp. 97–114. Available at: https://www.redalyc.org/pdf/4276/427641050003.pdf
Marketing, K. (2024) Durability Testing 101: The Water Permeability Test. Available at: https://blog.kryton.com/2024/03/durability-testing-101-the-waterpermeability-test/
Morales, L. et al. (2020) “Prevención de la contaminación por la fabricación de hormigones con nanopartículas”, RISTI, E30, pp. 297-312. Available at: https://www.researchgate.net/publication/341440818_Prevencion_de_la_contaminacion_por_la_fabricacion_de_hormigones_con_nanoparticulas
Tapia Vargas, J.F., Alvansazyazdi, M. and Barrionuevo Castañeda, A.A. (2024) “Study of an Environmentally Friendly High-Performance Concrete (HPC) Manufactured with the Incorporation of a Blend of Micro-Nano Silica”, Eídos, 17(24), pp. 95–110. Available at: https://doi.org/10.29019/eidos.v17i24.1369
Zhang, G., Peng, G., Zuo, X., Niu, X., and Ding, H. (2023) “Adding hydrated lime for improving microstructure and mechanical properties of mortar for ultrahigh performance concrete”, Cement and Concrete Research, 167, p. 107130. Available at: https://doi.org/10.1016/j.cemconres.2023.107130
Žižlavský, T., Vyšvařil, M., Bayer, P. and Rovnaníková, P. (2020) “Microstructure of biopolymer-modified aerial lime mortars”, MATEC Web of Conferences. Edited by T. Tracz, K. Mróz, and T. Zdeb, 322, p. 01023. Available at: https://doi.org/10.1051/matecconf/202032201023