Use of biocatalizers in the degradation of material lignocellulose: main impacts

Main Article Content

Carmen Salvador Pinos
https://orcid.org/0000-0002-5011-6031
Erenio González
Maira Rojas
Leyanis Mesa
Fernando Batallas
Amaury Pérez Martínez
https://orcid.org/0000-0003-3978-7982
Diana Concepción

Abstract

The present work explains the current efforts to develop an accessible, profitable and clean technology for the utilization of lignocellulosic residues to obtain ethanol and other derivatives through fermentative processes of the different sugars and by-products that result from the degradation of cellulose. Biomass, whose main component is cellulose, is the most abundant raw material on the planet, and its rational use would produce enormous economic and ecological benefits. Acid hydrolysis of cellulose is expensive and pollutant. Therefore, it is intended to escalate to industrial levels the enzymatic hydrolysis of cellulose, by means of enzymes produced by several species of fungi (Trichoderma, Aspergillus, etc.), bacteria and other organisms, and looking for other industrially useful sources for a biorefinery. It is ecologically beneficial, and potentially much less expensive, but it is necessary to reproduce to an industrial scale the activity observed in laboratory conditions. Genetic engineering helps to diversify the production of enzymes or increase the amount produced by organisms. The complete enzymatic hydrolysis uses cellulolytic enzymes: endoglucanases, exoglucanases and ß-glucosidases, hardly produced in industrially interesting amounts by a single organism, being necessary to combine several of them. In addition, techniques such as recycling or recirculation of enzymes within the bioreactor would help an integral use. Another line of research is the mathematical modeling of the production of enzymatic crudes with simulators such as Superpro Designer and others. The great variety of products obtained from plant biomass, from ethanol to citric acid, lactic acid, uronic acids, acetic acid, etc., support the economic, social, industrial and ecological benefits that this technology would generate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Salvador Pinos, C., González, E., Rojas, M., Mesa, L., Batallas, F., Pérez Martínez, A., & Concepción, D. (2018). Use of biocatalizers in the degradation of material lignocellulose: main impacts. FIGEMPA: Investigación Y Desarrollo, 5(1), 41–46. https://doi.org/10.29166/revfig.v1i1.799
Section
Artículos
Author Biographies

Carmen Salvador Pinos, Universidad Central del Ecuador

Orcid: 0000-0002-5011-6031

Erenio González, Universidad Central “Marta Abreu” de Las Villas

Orcid: 0000-0001-5741-8959

Amaury Pérez Martínez, Universidad Estatal Amazónica

Orcid: 0000-0003-3978-7982

Diana Concepción, Universidad Central “Marta Abreu” de Las Villas. Santa Clara, Cuba

Orcid: 0000-0002-4432-140X

References

Adsul, M.G., Ghule, J.E., Singh, R., Shaikh, H., Bastawde, K. B., Gokhale, D.V. y Varma, A.J. (2004). Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydrate Polymers, 57 (1), 67-72. doi: 10.1016/j.carbpol.2004.04.001.

Albernas Carvajal, Y., Corsano, G., Morales Zamora, M., González Cortés, M., Santos Herrero, R. y González Suárez, E. (2014). Optimal design for an ethanol plant combining first and second-generation technologies. CT&F Ciencia, Tecnología y Futuro, 5 (5), 97-120.

Álvarez Castillo, A., García Hernández, E., Domínguez, M.M., Granandos Baeza, J.M., Aguirre Cruz, A., Carmona García, R. y Mendoza Martínez, A.M. (2012). Aprovechamiento integral de los materiales lignocelulósicos. Revista Iberoamericana de Polímeros, 13 (4), 141-150.

Antunes, A., Pereira, N. y Ebole, M. F. (2006). Gestão em Biotecnologia. (1ra. Ed.) Rio de Janeiro: E-papers.

Ballesteros, M., Dominguez, J., Negro, M., Manzanares, P. y Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39, 1843-1848. doi: 10.1016/j.procbio.2003.09.011.

Barriga, D. (2011). Posibilidades de recirculación de enzimas celulolíticas en la hidrólisis del bagazo de caña de azúcar. (Trabajo de Diploma). Facultad de Ciencias Agropecuarias. Universidad Central Marta Abreu de Las Villas, Cuba.

Breuil, C., Chan, M. y Saddler, J. N. (1990). Comparison of the hydrolytic activity of commercial cellulase preparations. Applied Microbiology Biotechnology, 34, 31-35. doi: 10.1007/BF00170919

Brown, G., Barois, I. y Lavelle, P. (2000). Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. European Journal of Soil Biology, 36, 177-198. doi: 10.1016/S11645563(00)01062-1.

Castro, F. (1993). Discurso pronunciado durante la Inauguración del Centro de Biofísica Médica.

Concepción, D. y González, E. (2013). La gestión del conocimiento en el vínculo universidad empresa para el desarrollo local y territorial. V Conferencia de la Ciencias Sociales y Humanísticas.

De Vries, R. P. y Viser, J. (2005). Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev., 65, 497-552.

Foreman, P. K. (2003). Transcriptional regulation of biomass degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem, 278, 31988– 31997.

Funes, R. (2005). História Ambiental na América Latina. Belo Horizonte. Varia Historia, 21(33)

Ghose, T. y Bisaria, V. (1987). Measurement of Hemicellulase Activities. Pure & AppI. Chem., 59 (12), 1739—1752. Great Britain. Part 1: Xylanases.

Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Cell Press. Department of Chemistry, M. V. Lomonosov Moscow State University, Vorobyovy Gory 1/11, Moscow 119991, R.

Han, L., Feng, J., Zhu, C. y Zhang, X. (2009). Optimizing cellulase production of Penicillium waksmanii F10-2 with response surface methodology. African Journal of Biotechnology, 8 (16), 3879-3886.

Herrera García, M. (2011). Capacidad celulolítica de hongos existentes en la naturaleza para degradar residuos lignocelulósicos. (Tesis de diploma). Facultad de Ciencias Agropecuarias. Universidad Central Marta Abreu de Las Villas, Cuba.

Hoa, P., Thi, Q. y Nghiem, N. (2010). Optimization of endoglucanase production by Aspergillus niger VTCC-F021. Australian Journal of Basic and Applied Sciences, 6, 4151-5157.

Kovacs, K., Szakacs, G. y Zacch, G. (2009). Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochemistry, 44, 1323–1329

Lynd, L. R., Wyman, C. E. y Gerngross, T. U. (1999). Biocommodity engineering. Biotechnol. Prog., 15, 777–793.

Lynd, L.R., Weimer, P. J., van Zyl, W. H. y Pretorius, I. (2002). Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev., 66 (3), 506.

Mesa, L., González, E., Morales, M., Castro, E., Cara, C. y Kafarov, V. T. (2009). Technico-Economic Evaluation of Alternatives for Assimilation of ethanol production technology from sugar cane bagasse. Congreso de Medio Ambiente y Biocombustibles. Dubrovnik, Croatia.

Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E. y Mussatto, S. (2010). An approach to optimization of enzymatic hydrolysis from sugarcanne bagasse based on organosolv pretreatment. Journal Technical Bioetchnology, 85, 1092-1098.

Morales, M., Verelst, H., Mesa, L. y González, E. (2010). Simulation of furfural production process for revamping with ethanol technology from lignocellulosic residuals. Chemical Engineering Transactions, 21, 967-972. doi: 103303/CET1021162.

Mussato, S.I. y Teixeira, J. A. (2010). Lignocelulose as raw material in fermentation processes, Current Research, Technology and Education Topics. Applied Microbiology and Microbial Biotechnology, 2, 897-907.

Nwodo Chinedu, S. y Okochi, V. I. (2011). Cellulase Production by wild-type Aspergillus niger, Penicillium chrysogenum and Trichoderma harzianum using waste cellulosic materials. Journal of Science, 13(1).

Nwodo Chinedu, S., Okochi, V. I., Smith, H., Okafor, U., Onyegeme Okerenta, B. M. y Omidiji, O. (2007). Effect of carbon sources on cellulase (EC 3. 2. 1. 4) production by Penicillium chrysogenum PCL50. African Journal of Biochemistry Research, 1(1), 006-010.

Organización de las Naciones Unidas, ONU. (2016). Objetivos de Desarrollo Sostenible de las Naciones Unidas. Juntos por el Desarrollo.

Organización de las Naciones Unidas, ONU. (2017). Nueva Agenda Urbana. Conferencia de las Naciones Unidas sobre la Vivienda y el Desarrollo Urbano Sostenible (Hábitat III). Recuperado de http://habitat3.org/the-new-urban-agenda

Ramos, L. P., Breuil, C., Kushner, D. J. y Saddler, J. N. (1992). Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of Eucalyptus viminalis wood chips. Holzforschung International Journal of the Biology, Chemistry, Physics and Technology of Wood, 46(2), 149-154. doi:10.1515/hfsg.1992.46.2.149

RICYT. (2015). El Estado de la Ciencia. Principales Indicadores de Ciencia y Tecnología Iberoamericanos/Interamericanos. Red de indicadores de Ciencia y Tecnología.

Ryu, D. y Mandels, M. (1980). Cellulases: Biosynthesis and applications. Enzyme and Microbial Technology, 2, 91-102. doi: 10.1016/0141-0229(80)90063-0

Salvador, C. A., Destain, J., Rojas, M., Vásquez, E. y Paz y Miño, C. (2011). Producción de actividades enzimáticas por el intestino de Eisenia foetida (Annelida: Clitellata: Haplotaxida). Revista Ciencia, 14(2), 191-198

Salvador, C. A., Rojas, M., Jaramillo Kouperman, G., Yépez, L., Suárez, J. P., Mesa, L. y Paz y Miño, C. (2012). Búsqueda de bacterias con actividad EC 3.2.1.4 (endo-1,4beta-glucanasa) en Eisenia foetida (Oligochaeta, Lumbricidae). Revista Ecuatoriana de Medicina y Ciencias Biológicas.

Sarrouh, B. F., Jover, J., y González, E. (2005). Estudio de la hidrólisis del bagazo con ácido sulfúrico concentrado utilizando dos variantes de una sola etapa y una sola etapa modificada para la obtención de etanol y análisis técnico-económico de dicho proceso. Ingeniería e Investigación, 25 (3), 34-38. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092005000300005&lng=en&tlng=es .

Sims, R.E.H. (2010). An overview of second generation biofuel technologies. Bioresour. Technol., 101, 1570–1580.

UNESCO. (1997). Simposio sobre las repercusiones sociales de la revolución científica y tecnológica.

Valdés, C., Hernández, L., Pimentel, L., López, N. y Flores, M. (2004). Problemas Sociales de la Ciencia y la Tecnología. Selección de lecturas. La Habana, Cuba: Editorial Félix Varela.

Most read articles by the same author(s)