A study of a photoluminescence cementitious composite and its applications in construction
Main Article Content
Abstract
Nowadays, the need to develop materials that promote efficient energy savings has been one of the transcendental topics studied around the world. With this novelty, the present investigation determined that the inclusion of Strontium Aluminate co-doped with Europium and Dysprosium in binders based on Portland cement not only produces the photoluminescence phenomenon but also improves its mechanical properties; through the accomplishment of diverse physical-mechanical laboratory tests like the compressive strength in test pieces, besides chemical analyzes with XRF in different samples of concrete. The research further found that the 0.3:1 ratio of the compound to the cement allow obtaining the most optimal phosphorescent effect. Finally, by means of the economic analysis it is shown that the cost/benefit of applying the photoluminescent cementitious composite as a long-term road sign is much more cost effective than the use of the conventional luminaire.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Alfani, R. y Lezzi, G. (2016). Photoluminescent cementitious compositions based on hydraulic binders particularly suitable for use in safety signs, Italcementi S.P.A. (Bergamo, IT), WO 2016062873 A1.
ASTM International. (2010). ASTM E2073-10, Standard Test Method for Photopic Luminance of Photoluminescent (Phosphorescent) Markings, West Conshohocken, PA, doi: 10.1520/E2073-10
ASTM International. (2014). ASTM C136/C136M – 14: Standard test method for sieve analysis of fine and coarse aggregates, West Conshohocken, PA, doi: 10.1520/C0136_C0136M-14
ASTM International. (2015a). ASTM C128 – 15: Standard test method for relative density (specific gravity) and absorption of fine aggregate, West Conshohocken, PA, doi: 10.1520/C0128-15
ASTM International. (2015b). ASTM C1437-15: Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, doi: 10.1520/C1437-15
ASTM International. (2016a). ASTM C188 – 16, Standard test method for density of hydraulic cement.", West Conshohocken, PA, doi: 10.1520/C0188-16
ASTM International. (2016b). ASTM C187-16, Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste, West Conshohocken, PA, doi: 10.1520/C0187-16
ASTM International. (2016c). ASTM C33/C33M-16e1, Standard Specification for Concrete Aggregates, West Conshohocken, PA, doi:10.1520/C0033_C0033M-16E01
ASTM International. (2016d). ASTM C40/C40M-16: Standard Test Method for Organic Impurities in Fine Aggregates for Concrete, ASTM International, West Conshohocken, PA, doi:10.1520/C0040_C0040M-16
Carpio, V. (2016). Análisis experimental de un hormigón elaborado con residuos industriales de polvo de grafito. IV Congreso REDU. ESPE, Sangolquí, Ecuador.
DIN. (2009). DIN 67510-1: Phosphorescent pigments and products – Part 1: Measurement and marking at the producer.
Grijalva, F. y Laines, T. (2016). Diseño de morteros fotoluminiscentes aplicados de forma ornamental y señalización en caso de emergencia para edificaciones. (Tesis de Pregrado). Universidad Central del Ecuador, Quito, Ecuador.
Gschneidner, K.A., Eyring, L. y Lander, G.H. eds. (1999). Handbook on the physics and chemistry of rare earths (Vol. 26). Elsevier.
Einstein, A. (1905). "Concerning an Heuristic Point of View Toward the Emission and Transformation of Light." Annalen der Physik 17,322(6), pp.132-148.
Henríquez, B. (s.f.). La luz sin llamas: breve historia de la luminiscencia (primera parte). Recuperado de: http://www.cubasolar.cu/biblioteca/energia/Energia14/HTML/articulo07.htm
Hirata, Y., T. Sakaguchi y N. Takeuchi (2005). Phosphorescence exhibiting phosphor and process for producing the same, Nemoto & Co., Ltd., WO2005044944 A1.
Inan Akmehmet, G., Šturm, S., Bocher, L., Kociak, M., Ambrožič, B. y Ow-Yang, C. W. (2016), Structure and Luminescence in Long Persistence Eu, Dy, and B Codoped Strontium Aluminate Phosphors: The Boron Effect. J. Am. Ceram. Soc., 99, pp.2175-2180. doi:10.1111/jace.14188
INEN. (2014). Código de práctica ecuatoriano: CPE INEN-NEC-SE-MP 26-6. Capítulo 6: Mampostería Estructural. Quito, Ecuador.
Labahn, O. y Kohlhaas, B. (1985). Prontuario del cemento. Barcelona, España, Reverte.
Newman, J. y Choo, B.S. eds. (2003). Advanced concrete technology 1: Constituent Materials. London, England, Elsevier.
Ptacek, P. (2014). Strontium Aluminate-Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Applications. InTech, doi: 10.5772/57363
Ptáček, P., Šoukal, F., Opravil, T., Bartoníčková, E., Zmrzlý, M. y Novotný, R. (2014). Synthesis, hydration and thermal stability of hydrates in strontium-aluminate cement. Ceramics International, 40(7), pp.9971-9979.
Rojas, R. (2015). Diseño y Síntesis de Materiales Nanoestructurados basados en Aluminatos de Estroncio con Propiedades Fotoluminiscentes. (Tesis doctoral). Universidad Politécnica de Madrid, España.
Santolaya, P. (2014). Pieza de hormigón luminiscente. E. Tecment tecnologia y gestion constructiva SL. (Valencia, ES), ES1124406U.
Satyarno, I., Solehudin, A.P., Meyarto, C., Hadiyatmoko, D., Muhammad, P. y Afnan, R. (2014). Practical method for mix design of cement- based grout. Procedia Engineering, 95, pp.356- 365.
Velazco, G., Almanza, J.M., Cortés, D.A., Escobedo, J.C., y Escalante-Garcia., J.I. (2014). Effect of the strontium aluminate and hemihydrate contents on the properties of a calcium sulphoaluminate based cement. Materiales de Construcción, 64 (315), Julio–Septiembre, doi:10.3989/mc.2014.04413