A model for concrete mixture design using fuzzy logic

Main Article Content

Jorge Santamaría
https://orcid.org/0000-0002-3982-2488
Luis  Morales
https://orcid.org/0000-0001-7556-8803
José Pilaluisa
https://orcid.org/0000-0001-6949-350X

Abstract

Concrete, a mixture of Portland cement, water and aggregates, is commonly used in the construction industry with high percentage of in-situ fabrication. The proportions of each mixture component is very important to ensure its quality (i.e., compressive strength). Nowadays, several empirical mixture design procedures are utilized; however, the majority of them are based on equations, tables and/or correlations, without considering past experiences and/or experimental data. The present study illustrates the application of fuzzy logic theory for developing a model for estimating concrete mixture proportions by weight, without admixtures. The selected independent variables (input data) were those that are commonly used for concrete mixture design. Historical experimental data and concrete technician’s experience were utilized for creating membership functions (FMs) and fuzzy rules. Mamdani fuzzy inference system (SIL) was used for developing the model since this allows to have several outputs (e.g., water – cement ratio and aggregates). The results indicate that the SIL is able to estimate concrete mixture proportions very well (R2=95.1%); however, the model can be improved as long as new knowledge of the system is available. Furthermore, the model is able to use stored data and technical personal experience in order to develop particular models for each project.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Santamaría, J., Morales, L., & Pilaluisa, J. (2018). A model for concrete mixture design using fuzzy logic. FIGEMPA: Investigación Y Desarrollo, 5(1), 54–61. https://doi.org/10.29166/revfig.v1i1.815
Section
Artículos
Author Biographies

Jorge Santamaría, Universidad Central del Ecuador. Quito, Ecuador

Ph.D. en Ingeniería. Docente.

Orcid: 0000-0002-3982-2488

Luis  Morales, Universidad Central del Ecuador. Quito, Ecuador

Magíster en Ingeniería Informática Empresarial. Docente.

Orcid: 0000-0001-7556-8803

José Pilaluisa, Universidad Central del Ecuador. Quito, Ecuador

Magíster en Estructuras y Ciencias de los Materiales. Docente Universidad Central del Ecuador

References

ACI Committee 211. (1991). 211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009). Farmington Hills, MI.

ASTM International. (2017). C39/C39M-17, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, West Conshohocken, PA, doi: 10.1520/C0039_C0039M-17

INECYC (2015). Comercialización mensual y anual del cemento gris. Ecuador. Recuperado de: http://www.inecyc.org.ec/comercializacion-mensual-y-anual-de-cemento-gris/

Kute, S.Y. y Kale, R.S. (2013). Five-Layer Fuzzy Inference System to Design a Concrete Mixture, Based on ACI Method. ACI Materials Journal, 110(6).

Mamdani, E.H. y Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 7(1), pp.1-13. doi: 10.1016/S0020-7373(75)80002-2

Mamdani, E.H. (1977). Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Transactions on Computers, 26(12), pp. 1182-1191.

Neville, A. M., y Brooks, J. J. (2010). Concrete technology (2nd ed.). Harlow, England: Prentice Hall.

Ross, T. J. (2010). Fuzzy Logic with Engineering Applications (3rd edition). Chichester, U.K.: John Wiley & Sons, Ltd.

Takagi, T., y Sugeno, M. (1985). Fuzzy Identification of Systems and its Applications to Modeling and Control. IEEE Transactions on Systems, Man, and Cybernetics, 15(1), pp. 116-132.

Tayfur, G., Erdem, T. K., y Kirca, Ö. (2014). Strength Prediction of High-Strength Concrete by Fuzzy Logic and Artificial Neural Networks. Journal of Materials in Civil Engineering, 26(11), p. 04014079, doi: 10.1061/(ASCE)MT.1943-5533.0000985.

Tesfamariam, S., y Najjaran, H. (2007). Adaptive Network–Fuzzy Inferencing to Estimate Concrete Strength Using Mix Design. Journal of Materials in Civil Engineering, 19(7), pp. 550-560. doi: 10.1061/(ASCE)0899-1561(2007)19:7(550).

Tsukamoto, Y. (1979). An Approach to Fuzzy Reasoning Method, in Advances in Fuzzy Set Theory and Applications, M. M. Gupta, R. K. Ragade, and R. R. Yager, eds., Amsterdam, pp. 137–149: North-Holland Publishing Company.

Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), pp. 338-353.