Model for the forecast of the real demand of drinking water in the city of Quito
Main Article Content
Abstract
It is proposed to develop, calibrate and validate a mathematical model that predicts the real demand for drinking water in Quito horizons short, medium and long term, considering the main variables that act in the water supply. It is assumed that the demand for drinking water in Quito can be predicted as their fluctuation and growth are defined largely by weather, urban planning or land use, demographic, economic, social variables and autocorrelation own demand. The model forecast water demand corresponds to the study and analysis of a time series or vector X1 2557 data average daily flow (liters / sec.) Delivered by Treatment Plant Drinking Water Bellavista, POWPA of Quito, from January 2007 to December 2013. for the analysis of the time series or vector X1 several statesmen tools and fast Fourier transform that helps us determine the periodicities of the phenomenon are used. It is concluded explicitly obtaining sought forecast function potable water. The validation of the demand function obtained is the will in the second stage of the research, using data ranging from the beginning of 2014 until 2016.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Adamowski, J., Karapataki, Ch. 2010. Comparison of Multivariate Regression and artificial Neural Networks for Peak Urban Water-Demand Forecasting: Evaluation of Different ANN Learning Algorithms. Journal of Hydrologic Engineering, Vol. 15, No. 10.
Adamowski, J. 2008. Peak Daily Water Demand Forecast Modeling Using Artificial Neural Networks. Journal of Water Resources Planning and Management.
Ayabaca, E., et al. 2006. Proyecto de Agua Potable Ríos Orientales. EMAAP-Q. Quito. Ecuador.
Bakker, M., Vreeburg, H.G., Van Schagen, K.M,. Rietveld, L.C. (2013). A fully adaptive forecasting model for short-term drinking water Demand. Environmental Modelling & Software Vol.48, p. 141-151.
Box, G., Jenkins, G.M., Reinsel, G. (1976). Time Series Analysis: Forecasting and Control. San Francisco, California.
Campisi-Pinto, S. Adamowski, J. Oron, G. 2012. Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy. Water Resources Management. 26.
CEDEX. (2012). Estudio de los Impactos del Cambio Climático en los Recursos Hídricos y las Masas de Agua. Efectos Potenciales del Cambio en las Demandas de Agua y Estrategias de Adaptación. Informe Técnico. Madrid. España.
Chen, J. Boccelli, D.L. (2014). Demand forecasting for water distribution systems. Procedia Engineering, 70, 339 – 342. ELSIEVER.
Daza Sánchez, F. (2008) “Demanda de Agua en Zonas Urbanas de Andalucía” (Tesis Doctoral). Universidad de Córdova. España.
Department of Environment and Conservation (ENVC). (2010). Newfoundland Labrador. Study on Water Quality and Demand on Public Water Supplies with Variable Flow Regimes and Water Demand. Canada.
Diao, K., Barjenbruch, M. and Bracklow, U. (2010) Study on the impacts of peaking factors on a water distribution system in Germany, Water Science and Technology: Water Supply, 10(2), pp. 165-172
EPMAPS – HAZEN and SAWYER. 2011. Estudios de Actualización del Plan Maestro Integrado de agua Potable y Alcantarillado para el DMQ. Quito. Ecuador.
EPMAPS (2008). Normas de Diseño de Sistemas de Agua Potable para la EMAAP-Q. Quito. Ecuador.
Herrera, M., Torgo, L., Izquierdo, J., Pérez-García, R. (2010). Predictive models for forecasting hourly urban water demand. Journal of Hydrology, 387.
House-Peters, L. A., & Chang, H. (2011). Urban water demand modeling: Review of concepts, methods, and organizing principles. Water Resources Research, 47, 15.
INEN. (1992). Código Ecuatoriano de la construcción. Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a 1 000 habitantes. Primera Edición.
Ministerio de Desarrollo Económico. (2000). Reglamento Técnico del sector de agua potable y saneamiento básico. RAS – 2000. Sección ii. Título b. Sistemas de Acueducto. Bogotá.
Nasseri, M., Moeini, A., Tabesh, M. (2011). Forecasting monthly urban water demand using Extended Kalman Filter and Genetic Programming. Journal Expert Systems with Applications, 38, 7387–7395.
Bai, Y., Wang, P., Li, C., Xie, J., Wang, Y. (2014). A multi-scale relevance vector regression approach for daily urban water demand forecasting. Journal of Hydrology, 517, 236–245.