Diferencias en el clima que produce incendios forestales y de olas de calor en Victoria, Australia
Contenido principal del artículo
Resumen
Los incendios forestales y las olas de calor son peligrosas amenazas naturales en Australia. Ambos riesgos se caracterizan por anomalías de la temperatura del aire superiores al promedio climatológico. Sin embargo, el clima de incendios forestales y el de olas de calor se diferencian en algunos otros aspectos climatológicos. Este artículo compara los patrones del clima, asociados a estos dos tipos de eventos climatológicos extremos, en el estado de Victoria, Australia. Los resultados muestran que solo el 13% de los incendios forestales, en esta región, co-ocurren con olas de calor. Desde un punto de vista sinóptico, la principal diferencia entre los dos eventos es la circulación de un frente frío y sus fuertes vientos asociados, en el día en que los incendios forestales ocurren. Adicionalmente, las olas de calor se caracterizan por patrones de humedad por sobre el promedio climatológico en el continente australiano, mientras que el clima de incendios forestales se presenta cuando en Australia existe sequía. En promedio, un patrón de “El Niño” persiste en el Océano Pacífico Tropical cuando ocurren incendios forestales en Victoria. Por otra parte, las olas de calor en esta región ocurren generalmente en condiciones neutrales del fenómeno de “El Niño”. Los análisis de esta investigación usaron datos de estaciones meteorológicas y también de “reanálisis”. Estos hallazgos sugieren que usar patrones de fenómenos climatológicos remotos (como “El Niño”) asociados a incendios forestales, pueden incidir en mejorar las predicciones, por temporada del clima, que produce incendios forestales.
Descargas
Métricas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Citas
ABS. (2016). Victoria. [Online]. Available: http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/3218.0MainFeatures252013-14?opendocument&tabname=Summary&prodno=3218.0&issue=2013-14&num=&view=. [Accessed: 26-Jan-2016].
Ashcroft, L., Karoly, D. J. and Gergis, J. (2014). Southeastern Australian climate variability 1860- 2009: a multivariate analysis. Int. J. Climatol., 34(6), 1928–1944.
Blanchi, R., Lucas, C., Leonard, J. and Finkele, K. (2010). Meteorological conditions and wildfire-related houseloss in Australia. Int. J. Wildl. Fire, 19(7), 914–926.
BoM. (2009). Bunshfire weather. [Online]. Available: http://www.bom.gov.au/weather-services. [Accessed: 04-Dec-2015].
Boschat, G., Pezza, A., Simmonds, I., Perkins, S., Cowan, T. and Purich, A. (2014). Large-scale and sub-regional connections in the leup up to summer heatwave and extreme rainfall events in eastern Australia. Clim. Dyn., 1–18.
Bryant, C. (2008). Understanding bushfire: trends in deliberate vegetation fires in Australia.
Coates, L. (1996). An Overview of Fatalities from some Natural Hazards in Australia. in Conference on Natural Disaster Reduction 1996, Conference Proceedings, p. 49.
Compo, G. P. et al. (2011). The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc., 137(654), 1–28.
Cowan, T., Marine, C., Perkins, S., Pezza, A., Boschat, G. and Sadler, K. (2014). More frequent, longer and hotter heat waves for Australia in the 21st century Alexandre Pezza , Ghyslaine Boschat, and Katherine Sadler. J. Clim., 27(15), 5851–5871.
Crompton, R. P., McAneney, K. J., Chen, K., Pielke, R. a. and Haynes, K. (2010). Influence of Location, Population, and Climate on Building Damage and Fatalities due to Australian Bushfire: 1925-2009, Weather. Clim. Soc., 2(4), 300–310.
Harris, S., Nicholls, N. and Tapper, N. (2013). Forecasting fire activity in Victoria, Australia, using antecedent climate variables and ENSO indices. Int. J. Wildl. Fire.
Haynes, K., Handmer, J., McAneney, J., Tibbits, A. and Coates, L. (2010). Australian bushfire fatalities 1900-2008: exploring trends in relation to the `Prepare, stay and defend or leave early’ policy. Environ. Sci. Policy, 13(3), 185–194.
Haynes Bradstock, R. A., Gill, A. M. and Williams, R. J. B. (2012). Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World. CSIRO Publishing.
Klingaman, N. P., Woolnough, S. J. and Syktus, J. (2013). On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia. Int. J. Climatol., 33(10), 2413–2430.
Lau N. C. and Nath, M. J. (2000). Impact of ENSO on the variability of the Asian-Australian Monsoons as simulated in GCM experiments. J. Clim., 13(24), 4287–4309.
Lucas, C., Hennessy, K., Mills, G. and Bathols, J. (2007). Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts CSIRO Marine and Atmospheric Research September 2007. Consultancy Report prepared for The Climate Institute of.
Luke, R. and McArthur, A. (1978). Bushfires in Australia. Canberra.
McAneney, J., Chen, K. and Pitman, A. (2009). 100-years of Australian bushfire property losses: is the risk significant and is it increasing? J. Environ. Manage., 90(8), 2819–22.
McBride, J. L., Mills, G. A. and Wain, A. G. (2009). CAWCR Technical Report No. 071: Modelling and understanding high impact weather. Extended abstracts of the third CAWCR Modelling Workshop, 30 november - 2 December 2009. Melbourne, Australia.
Mills, G. A. (2005). A re-examination of the synoptic and mesoscale meteorology of Ash Wednesday 1983. Aust. Meteorol. Mag., 54, 35–55.
Murray, R. J. and Simmonds, I. (1991). A numerical scheme for tracking cyclones. Aust. Meteorol. Mag., 39(3).
Nairn, J. and Fawcett, R. (2013). Defining heatwaves: heatwave defined as a heat- impact event servicing all community and business sectors. Australia, 60.
Nicholls, N. and Lucas, C. (2007). Interannual variations of area burnt in Tasmanian bushfires: Relationships with climate and predictability. Int. J. Wildl. Fire, 16(5), 540–546.
Perkins, S. E., Alexander, L. V. and Nairn, J. R. (2012). Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39(20).
Pezza, A. B., Rensch, P. and Cai, W. (2012). Severe heat waves in Southern Australia: synoptic climatology and large-scale connections. Clim. Dyn., 38(1–2), 209–224.
Power, S., Casey, T., Folland, C., Colman, A. and Mehta, V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn., 15, 319–324.
Rayner, N., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.,108(D14), p. 4407.
Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. and Hendon, H. H. (2009). On the Remote Drivers of Rainfall Variability in Australia, Mon. Weather Rev., 137(10), 3233–3253.
Sadler, K., Pezza, A. and Cai, W. (2012). Cool sea surface temperatures in the Tasman Sea associated with blocking and heat waves, Bull. Aust. Meteorol. Oceanogr. Soc., 25, 80–83.
Sherbon, E. (1975). Physiography of Victoria. Whitcombe & Tombs Pty. Ltd.
Trewin, B. (2013). A daily homogenized temperature data set for Australia. Int. J. Climatol., 33(6), 1510–1529.
Verdon, D., Kiem, A. and Franks, S. (2004). Multi-decadal variability of forest fire risk - eastern Australia, 165–171.
White, C. J., Hudson, D. and Alves, O. (2013). ENSO, the IOD and the intraseasonal prediction of heat extremes across Australia using POAMA-2. Clim. Dyn., 1–20.
Williams, A. A. J. and Karoly, D. J. (1999). Extreme fire weather in Australia and the impact of the El Nino- Southern Oscillation. Aust. Meteorol. Mag., 48(1), 15–22.
Williams, R. J., Gill, A. M. and Bradstock, R. A. (2012). Flammable Australia: Fire Regimes, Biodiversitt and Ecosystems in a Changing World. CSIRO Publishing.