Innovation in sustainable infrastructure: advanced analysis of the mechanical properties of permeable pavers for resilient and eco-efficient construction

Main Article Content

Mohammadfarid Alvansazyazdi
https://orcid.org/0000-0001-8797-5705
Cristian Augusto Colimba-Huera
https://orcid.org/0009-0001-2423-1212
Cristian Estuardo Cando-Guamán
Jorge Luis Santamaría-Carrera
https://orcid.org/0000-0002-3982-2488
Hugo Alexander Cadena-Perugachi
https://orcid.org/0009-0008-3369-8624
Natali Elizabeth Lascano-Robalino
Jorge Alexander Bucheli-García
https://orcid.org/0009-0001-0641-2458
Edwin Iván Soledispa-Pereira
Jorge Oswaldo Crespo-Bravo
Marcelo Fabián Oleas-Escalante
Carmita Guadalupe Jiménez-Merchán
https://orcid.org/0009-0009-5143-7521
Ángel Mauricio Espinoza-Cotera
Edgar Patricio Jácome-Monar

Abstract

The present research focused on the design and development of a permeable paver that allows rainwater to filter into the subsoil, thereby reducing the amount of water entering sewer systems and minimizing the impact of urban flooding. The process began with the evaluation of compressive strength and permeability in test cylinders, selecting the most suitable mixtures for subsequent paver fabrication. Once the optimal designs were chosen, key properties such as indirect tensile strength, water absorption, and permeability were assessed. The results showed that by using a high-range water-reducing admixture, indirect tensile strengths of 3.4, 3.9, and 4.5 MPa were achieved, with permeabilities of 2.30, 1.93, and 1.15 mm/s, respectively. These findings demonstrate that the developed pavers successfully meet the mechanical strength requirements necessary for use in interlocking pavements.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Alvansazyazdi, M., Colimba-Huera, C. A., Cando-Guamán, C. E., Santamaría-Carrera, J. L., Cadena-Perugachi, H. A., Lascano-Robalino, N. E., Bucheli-García, J. A., Soledispa-Pereira, E. I., Crespo-Bravo, J. O., Oleas-Escalante, M. F., Jiménez-Merchán, C. G., Espinoza-Cotera, Ángel M., & Jácome-Monar, E. P. (2025). Innovation in sustainable infrastructure: advanced analysis of the mechanical properties of permeable pavers for resilient and eco-efficient construction . FIGEMPA: Investigación Y Desarrollo, 19(1), e7948. https://doi.org/10.29166/revfig.v19i1.7948
Section
Artículos
Author Biographies

Mohammadfarid Alvansazyazdi, Universitat Politècnica de València. Spain

Universitat Politècnica de València Spain, Institute of Science and Concrete Technology, ICITECH, Building 4N on the Vera campus, at Camino de Vera, s/n, 46022 Valencia, Spain. Email: moal13m@doctor.upv.es

Central University of Ecuador, Faculty of Engineering and Applied Sciences, Civil Engineering Department, Av. Universitaria 170521, Quito, Ecuador. 

Laica Eloy Alfaro de Manabi University, Faculty of Engineering Industrial and Architecture, School of Civil Engineering, Ciudadela Universitaria, Calle 12, Vía a San Mateo 130802, Manta, Ecuador

Cristian Augusto Colimba-Huera, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador, Faculty of Engineering and Applied Sciences, Civil Engineering Department, Av. Universitaria 170521, Quito, Ecuador.

Cristian Estuardo Cando-Guamán, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador, Faculty of Engineering and Applied Sciences, Civil Engineering Department, Av. Universitaria 170521, Quito, Ecuador.

Jorge Luis Santamaría-Carrera, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador. Faculty of Engineering and Applied Sciences. 

Hugo Alexander Cadena-Perugachi, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador, Faculty of Engineering and Applied Sciences.

Natali Elizabeth Lascano-Robalino, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador. Faculty of Engineering and Applied Sciences

Jorge Alexander Bucheli-García, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador , Faculty of Engineering and Applied Sciences, Information Systems Department, Av. Universitaria 170521.

Pontifical Catholic University of Ecuador, Department of Civil Engineering, Avenida 12 de Octubre 1076 and Roca 170525

Edwin Iván Soledispa-Pereira, Terminal Portuario de Manta. Manta, Ecuador

Terminal Portuario de Manta, 130802, Manta, Ecuador

Jorge Oswaldo Crespo-Bravo, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador, Faculty of Engineering and Applied Sciences, Civil Engineering Department, Av. Universitaria 170521

Marcelo Fabián Oleas-Escalante, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador

Laica Eloy Alfaro de Manabi University. Faculty of Engineering Industrial and Architecture. School of Civil Engineering, Ciudadela Universitaria, Calle 12, Vía a San Mateo 130802

Carmita Guadalupe Jiménez-Merchán, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador

Laica Eloy Alfaro de Manabi University, Faculty of Engineering Industrial and Architecture, School of Civil Engineering, Ciudadela Universitaria, Calle 12, Vía a San Mateo 130802

Ángel Mauricio Espinoza-Cotera, Universidad Laica Eloy Alfaro de Manabí. Manta, Ecuador

Laica Eloy Alfaro de Manabi University, Faculty of Engineering Industrial and Architecture, School of Civil Engineering, Ciudadela Universitaria, Calle 12, Vía a San Mateo 130802

Edgar Patricio Jácome-Monar, Universidad Central del Ecuador. Quito, Ecuador

Central University of Ecuador, Faculty of Engineering and Applied Sciences, Civil Engineering Department, Av. Universitaria 170521

References

ACI Committee 522 (2010) ACI 522R-10 Report on Pervious Concrete. American Concrete Institute. Disponible en: https://www.concrete.org/store/productdetail.aspx?ItemID=52210&Format=PROTECTED_PDF&Language=English&Units=US_AND_METRIC

American Society for Testing and Materials (2017) ASTM C494 Standard Specification for Chemical Admixtures for Concrete. Disponible en: https://www.appliedtesting.com/standards/astm-c494-chemical-admixtures-for-concrete

American Society for Testing and Materials (2021) ASTM C39 /C39M-21 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Disponible en: https://www.appliedtesting.com/standards/astm-c39-compressive-strength-of-cylindrical-concrete-specimens

Cabezas Fierro, M. I. (2014) Elaboración de un manual de procesos constructivos del adoquinado. Bachelor thesis. Escuela Politécnica Nacional. Quito, Ecuador. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/7225

Colimba Huera, C. & Cando Guamán, C. (2025) Análisis de las propiedades mecánicas de adoquines permeables de hormigón cumpliendo la Normativa NTE INEN 3040 para tránsito peatonal. Tesis no publicada. Quito.

Hernández Cepeda, Y. B. (2018) Pavimentos de adoquines de concreto una solución ambiental en la construcción de infraestructura vial de Colombia. Bachelor Tesis. Universidad Militar Nueva Granada. Bogota, Colombia. Disponible en: https://repository.umng.edu.co/items/82868e3c-2031-40ab-9be3-df319e3f305c

Indumei (2024) Vibrocompactadora de placas de hormigón VCH-1. Disponible en: https://www.indumei.com/maquinaria-adoquin

Instituto del Cemento y del Hormigón de Chile (2013) Manual de Diseño de Pavimentos y de Adoquines de Hormigón. Santiago de Chile, Gráfica LOM. Disponible en: https://ich.cl/documentos-pavimentando/manual-diseno-de-pavimentos-de-adoquines-de-hormigon/

Instituto Mexicano del Cemento y del Concreto (2004) Conceptos básicos del concreto. Disponible en: http://www.imcyc.com/cyt/julio04/CONCEPTOS.pdf

Interlocking Concrete Pavement Institute (2003) Structural Desing of Interlocking Concrete Pavement for Roads and Parking Lots. Tech Spec Technical Bulletins. Disponible en: https://www.castleliteblock.com/green/documents/Interlocking%20Concrete%20Pavers%20Structural%20Design%20for%20Roads%20and%20Parking%20Lots%20-Tech%20Spec%204.pdf?srsltid=AfmBOooPsD5krmQLWX788Zjj1aiqc_lztkDFGXTkzX0IBEsXre6L9iHA

Ministerio de Transporte y Obras Públicas del Ecuador (2013) Volumen º 3 especificaciones generales para la construcción de caminos y puentes. Norma ecuatoriana vial. Quito. Disponible en: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_3.pdf

National Ready Mixed Concrete Association (2020) CIP 38 - Concreto Permeable. Disponible en: https://www.nrmca.org/wp-content/uploads/2020/04/CIP38es.pdf

Salas Pérez, C., et al. (2019) “Urban Growth and Soil Waterproofing around the Forest Reserve Thomas van der Hammen in the City of Bogotá”, Ambiente y Desarrollo, 23(44). DOI: https://doi.org/10.11144/Javeriana.ayd23-44.cuis

Servicio Ecuatoriano de Normalización (2010) NTE INEN 1578. Hormigón de cemento hidráulico. Determinación del asentamiento. Quito. Disponible en: https://es.scribd.com/document/394405155/NORMA-INEN-1578-pdf

Servicio Ecuatoriano de Normalización (2016) NTE INEN 3040. Adoquines de hormigón. Requisitos y métodos de ensayo. Quito. Disponible en: https://es.scribd.com/document/341861298/Nte-Inen-3040

Servicio Nacional de Normalización (2011) NTE INEN 872. Áridos para hormigón. Requisitos., Quito. Disponible en: https://es.scribd.com/document/515214336/NTE-INEN-872-2011-Aridos-Hormigon-Requisitos

Sika Ecuador (2025) Reductores de agua de alto rango. Disponible en: https://ecu.sika.com/es/construccion/concreto/plastificantes-reductoresdeagua/reductores-de-aguadealtorango/sika-viscocrete-4100.html

Valcuende, M. O., Parra, C. & Jarque, J. (2007) “Self-consolidating concrete homogeneity”, Materiales de Construcción, 57(287), pp. 37-52. DOI: https://doi.org/10.3989/mc.2007.v57.i287.55

Most read articles by the same author(s)