Innovation in sustainable infrastructure: advanced analysis of the mechanical properties of permeable pavers for resilient and eco-efficient construction
Main Article Content
Abstract
The present research focused on the design and development of a permeable paver that allows rainwater to filter into the subsoil, thereby reducing the amount of water entering sewer systems and minimizing the impact of urban flooding. The process began with the evaluation of compressive strength and permeability in test cylinders, selecting the most suitable mixtures for subsequent paver fabrication. Once the optimal designs were chosen, key properties such as indirect tensile strength, water absorption, and permeability were assessed. The results showed that by using a high-range water-reducing admixture, indirect tensile strengths of 3.4, 3.9, and 4.5 MPa were achieved, with permeabilities of 2.30, 1.93, and 1.15 mm/s, respectively. These findings demonstrate that the developed pavers successfully meet the mechanical strength requirements necessary for use in interlocking pavements.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
ACI Committee 522 (2010) ACI 522R-10 Report on Pervious Concrete. American Concrete Institute. Disponible en: https://www.concrete.org/store/productdetail.aspx?ItemID=52210&Format=PROTECTED_PDF&Language=English&Units=US_AND_METRIC
American Society for Testing and Materials (2017) ASTM C494 Standard Specification for Chemical Admixtures for Concrete. Disponible en: https://www.appliedtesting.com/standards/astm-c494-chemical-admixtures-for-concrete
American Society for Testing and Materials (2021) ASTM C39 /C39M-21 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Disponible en: https://www.appliedtesting.com/standards/astm-c39-compressive-strength-of-cylindrical-concrete-specimens
Cabezas Fierro, M. I. (2014) Elaboración de un manual de procesos constructivos del adoquinado. Bachelor thesis. Escuela Politécnica Nacional. Quito, Ecuador. Disponible en: https://bibdigital.epn.edu.ec/handle/15000/7225
Colimba Huera, C. & Cando Guamán, C. (2025) Análisis de las propiedades mecánicas de adoquines permeables de hormigón cumpliendo la Normativa NTE INEN 3040 para tránsito peatonal. Tesis no publicada. Quito.
Hernández Cepeda, Y. B. (2018) Pavimentos de adoquines de concreto una solución ambiental en la construcción de infraestructura vial de Colombia. Bachelor Tesis. Universidad Militar Nueva Granada. Bogota, Colombia. Disponible en: https://repository.umng.edu.co/items/82868e3c-2031-40ab-9be3-df319e3f305c
Indumei (2024) Vibrocompactadora de placas de hormigón VCH-1. Disponible en: https://www.indumei.com/maquinaria-adoquin
Instituto del Cemento y del Hormigón de Chile (2013) Manual de Diseño de Pavimentos y de Adoquines de Hormigón. Santiago de Chile, Gráfica LOM. Disponible en: https://ich.cl/documentos-pavimentando/manual-diseno-de-pavimentos-de-adoquines-de-hormigon/
Instituto Mexicano del Cemento y del Concreto (2004) Conceptos básicos del concreto. Disponible en: http://www.imcyc.com/cyt/julio04/CONCEPTOS.pdf
Interlocking Concrete Pavement Institute (2003) Structural Desing of Interlocking Concrete Pavement for Roads and Parking Lots. Tech Spec Technical Bulletins. Disponible en: https://www.castleliteblock.com/green/documents/Interlocking%20Concrete%20Pavers%20Structural%20Design%20for%20Roads%20and%20Parking%20Lots%20-Tech%20Spec%204.pdf?srsltid=AfmBOooPsD5krmQLWX788Zjj1aiqc_lztkDFGXTkzX0IBEsXre6L9iHA
Ministerio de Transporte y Obras Públicas del Ecuador (2013) Volumen º 3 especificaciones generales para la construcción de caminos y puentes. Norma ecuatoriana vial. Quito. Disponible en: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_3.pdf
National Ready Mixed Concrete Association (2020) CIP 38 - Concreto Permeable. Disponible en: https://www.nrmca.org/wp-content/uploads/2020/04/CIP38es.pdf
Salas Pérez, C., et al. (2019) “Urban Growth and Soil Waterproofing around the Forest Reserve Thomas van der Hammen in the City of Bogotá”, Ambiente y Desarrollo, 23(44). DOI: https://doi.org/10.11144/Javeriana.ayd23-44.cuis
Servicio Ecuatoriano de Normalización (2010) NTE INEN 1578. Hormigón de cemento hidráulico. Determinación del asentamiento. Quito. Disponible en: https://es.scribd.com/document/394405155/NORMA-INEN-1578-pdf
Servicio Ecuatoriano de Normalización (2016) NTE INEN 3040. Adoquines de hormigón. Requisitos y métodos de ensayo. Quito. Disponible en: https://es.scribd.com/document/341861298/Nte-Inen-3040
Servicio Nacional de Normalización (2011) NTE INEN 872. Áridos para hormigón. Requisitos., Quito. Disponible en: https://es.scribd.com/document/515214336/NTE-INEN-872-2011-Aridos-Hormigon-Requisitos
Sika Ecuador (2025) Reductores de agua de alto rango. Disponible en: https://ecu.sika.com/es/construccion/concreto/plastificantes-reductoresdeagua/reductores-de-aguadealtorango/sika-viscocrete-4100.html
Valcuende, M. O., Parra, C. & Jarque, J. (2007) “Self-consolidating concrete homogeneity”, Materiales de Construcción, 57(287), pp. 37-52. DOI: https://doi.org/10.3989/mc.2007.v57.i287.55