El Número de casos confirmados de la covid-19 en Ecuador identificados por provincia de atención, se ajustan a la distribución de Ea ley de newcomb-benford
DOI:
https://doi.org/10.29166/rfcmq.v46i2.3094Palabras clave:
COVID-19, monitoreo epidemiológico, conceptos matemáticosResumen
Resumen
Introducción: Los datos epidemiológicos de COVID-19, de China, Estados Unidos, Korea del Sur, Inglaterra, España, Italia, Alemania, Holanda y Suecia se ajustan a la distribución de la Ley de Newcomb-Benford (LNB), lo cual indicaría que no existe falsificación de datos. No existe ningún reporte realizado con los datos epidemiológicos de Ecuador.
Objetivo: Conocer si los datos proporcionados por el Ministerio de Salud Pública (MSP) del Ecuador, con respecto a los casos confirmados con COVID-19 por provincia de atención, se ajustan a LNB.
Material y métodos: Se utilizó la base de datos epidemiológicos del Ministerio de Salud Pública del Ecuador, donde se aplicó la LNB a los datos epidemiológicos y
luego se aplicó la prueba de Chi – Cuadrado de Bondad de ajuste.
Resultados: Se obtuvo un valor p de 0,872 que es mayor al valor de significancia α = 0,05 y un valor de Chi-cuadrado = 3,82722, que es menor al valor crítico de Chi-cuadrado 15,5073.
Conclusión: Se aceptó la hipótesis nula, asumiendo que los datos epidemiológicos si se ajustan a la LNB y por ende no existiría datos falsificados.
Descargas
Métricas
Citas
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA [serial on Internet]. 2020 Feb [cited 2020 Sep 7]; 323(13): [1239-1242]. doi: https://doi.org/10.1001/ jama.2020.2648. Available from; https://jamanetwork.com/journals/jama/fullarticle/2762130.
Rabaan Ali, Al-Ahmed Shamsah, Haque Shafiul, Sah Ranjit, Tiwari Ruchi, Yashpal Singh, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Infez. Med [serial on Internet]. 2020 Jan [cited 2020 Sep 22]; 28(2):174-84. Available from: https://pubmed.ncbi.nlm.nih.gov/32275259/#:~:text=Since%20the%20SARS%2DCoV%2D2,CoV%2C%20they%20share%20several%20similarities.&text=The%20presence%20of%20a%20furin,compared%20to%20other%20beta%20coronaviruses.
Chen, Yu, Liu Qianyun y Guo Deyin. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. [serial on Internet]. 2020 Apr [cited 2020 Sep 8]; 92(4):418-423. doi: 10.1002/jmv.25681. Available from: https://pubmed.ncbi.nlm.nih.gov/31967327/.
Dae-Gyun, Ahn Shin, Hye-Jin Kim, Mi-Hwa Sunhee, Lee Kim, Hae-Soo Myoung et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. [serial on Internet]. 2020 Mar [cited 2020 Sep 8]; 30(3):313-24. doi: 10.4014/jmb.2003.03011. Available from: https://pubmed.ncbi.nlm.nih.gov/32238757/.
Guo Yan-Rong, Qing-Dong Cao, Zhong-Si Hong, Yuan-Yang Tan Chen, Shou-Deng Jin, Hong-Jun Tan et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID 19) outbreak – an update on the status. Mil. Med. Res. [serial on Internet]. 2020 Mar [cited 2020 Sep 12]; 7(1):11. doi: 10.1186/s40779-020-00240-0. Available from: https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-020-00240-0.
Hussin A. Rothan. y N. Byrareddy Siddappa. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. [serial on Internet]. 2020 May [cited 2020 Sep 11]; 109:1024-33. doi: 10.1016/j.jaut.2020.102433. Available from: https://www.sciencedirect.com/science/article/pii/S0896841120300469.
Kannan S, P. Shaik, Syed-Ali Sheeza A y Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur. Rev. Med. Pharmacol. Sci. [serial on Internet]. 2020 Feb [cited 2020 Sep 11]; 24(4):2006-2011. doi: 10.26355/eurrev_202002_20378. Available from: https://www.europeanreview.org/article/20378.
Pan A, Liu Li, Wang Chaolong, Guo Huan, Hao Xingjie, Wang Qi, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA. [serial on Internet]. 2020 May [cited 2020 Sep 12]; 323(19):1915-1923. doi: 10.1001/jama.2020.6130. Available from: https://jamanetwork.com/journals/jama/fullarticle/2764658
Rothe Camila, Schunk Mirjam, Sothmann Peter, Bretzel Gisela, Guenter Froeschl, Wallrauch Claudia et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. [serial on Internet]. 2020 Mar [cited 2020 Sep 12]; 382(10):970-971. doi: 10.1056/NEJMc2001468. Available from: https://www.nejm.org/doi/full/10.1056/NEJMc2001468.
Ministerio de Salud Pública (MSP) del Ecuador [Internet]. Actualización de casos de coronavirus en Ecuador. 2020a [citado 2020 Oct 17]. Disponible en: https://www.salud.gob.ec/actualizacion-de-casos-de-coronavirus-en-ecuador/.
Ministerio de Salud Pública (MSP) del Ecuador [Internet]. 2020b. Boletines epidemiológicos coronavirus por semanas. 2020b [citado 2020 Sep 27]. Disponible en: https://www.salud.gob.ec/boletines-epidemiologicos-coronavirus-por-semanas/.
Newcomb Simon. Note on the frecuency of use of the differents digits in natural numbers. American Journal of Mathematics. [serial on Internet]. 1881; [cited 2020 Sep 3] 4(1):34-40. Available from: http://www.uvm.edu/pdodds/files/papers/others/1881/newcomb1881a.pdf.
Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. JSTOR. [serial on Internet]. 1938 Mar [cited 2020 Sep 2]; 78(4):551-572. Available from: https://www.jstor.org/stable/984802?seq=1.
Morales L, Zuñiga M. Sistema utilizando la Ley de Benford para detectar posibles fraudes electorales en las elecciones convocadas en Ecuador [Tesis de grado]. Quito: Escuela Politécnica Nacional. Facultad de Ingeniería de Sistemas; 2010. [citado 2020 Sep 14]. Disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/2547/1/CD-3241.pdf.
Cabeza-García, PM. Aplicación de la ley de Benford en la detección de fraudes. Universidad y Sociedad. [seriado en Internet]. 2019 Sep [citado 2020 Sep 12]; 11(5):421-427. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202019000500421
Gauvrit-Gauvrit N, Houillon JC, Delahaye J. Generalized Benford’s Law as a Lie Detector. Adv. Cogn. Psychol. [serial on Internet]. 2017 Jun [cited 2020 Sep 10]; 13(2):121-127. doi: 10.5709/acp-0212-x. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504535/.
Gauvrit-Gauvrit N, Delahaye JP. Pourquoi la loi de Benfordn’est pas mystérieuse (Why Benford’s law is not mysterious). Mathematics and Social Sciences. [serial on Internet]. 2008 Jun [cited 2020 Sep 11]; 182(46):7-15. doi: 10.4000/msh.10363. Available from: https://www.researchgate.net/publication/30449338_Pourquoi_la_loi_de_Benford_n'est_pas_mysterieuse.
Hill TP. A Statistical Derivation of the Significant-Digit Law. Statist. Sci. [serial on Internet]. 1995 Nov [cited 2020 Sep 11]; 10(4):354-363. doi: 10.1214/ss/1177009869. Available from: https://projecteuclid.org/euclid.ss/1177009869
Nigrini M. Benford´s Law: Aplications for Forensic Accounting, Auditing, and Fraud Detections. 1st ed. New Jersey: John Wiley & Sons; 2012.
Vega-Flores C. La Ley de Benford y su Aplicación en la Detección de Fraudes Financieros. Revista Varianza. [seriado en Internet]. 2012 Nov [citado 2020 Sep 12]; 9:5-7. Disponible en: http://www.revistasbolivianas.org.bo/scielo.php?script=sci_arttext&pid=S9876-67892012000100003&lng=es&nrm=iso
Martínez R, Canisales C. Ley de Benford y sus aplicaciones. [Tesis de grado]. San Salvador: Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Matemática; 2009. Disponible en: http://ri.ues.edu.sv/id/eprint/12497/1/19200765.pdf.
Hill TP. Random-number guessing and the first digit phenomenon. Psychol Rep. [serial on Internet]. 1988 Jun [cited 2020 Sep 11]; 3(62):967-971. doi: https://doi.org/10.2466/pr0.1988.62.3.967. Available from: https://journals.sagepub.com/doi/10.2466/pr0.1988.62.3.967.
Castañeda G. La ley de Benford y su aplicabilidad en el análisis forense de resultados electorales. Polít. Gob. [seriado en Internet]. 2011 Ene [citado 2020 Sep 12]; 18(2):297-329. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-20372011000200004&lng=es&nrm=iso>.
Campos LA, Salvo E, Flores-Moya A. Natural taxonomic categories of angiosperms obey Benford’s law, but artificial ones do not. Systematics and Biodiversity. [serial on Internet]. 2016 May [cited 2020 Sep 12]; 5(14):431-440. doi: 10.1080/14772000.2016.1181683. Available from: https://www.tandfonline.com/doi/abs/10.1080/14772000.2016.1181683
Cerri J. A fish rots from the head down: how to use the leading 2 digits of ecological data to detect their falsification. bioRxiv. [serial on Internet]. 2018 Jul [cited 2020 Sep 8];368951 doi: https://doi.org/10.1101/368951. Available from: https://www.biorxiv.org/content/10.1101/368951v1?rss=1
Costas E, López-Rodas V, Toro FJ, Flores-Moya A. The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquatic Botany. [serial on Internet]. 2008 Oct [cited 2020 Sep 8]; 89(3):341-343. doi: 10.1016/j.aquabot.2008.03.011. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304377008000533
Docampo S, Trigo MM, Aira MJ, Cabezudo B, Flores-Moya A. Benford’s law applied to aerobiological data and its potential as a quality control tool. Aerobiologia. [serial on Internet]. 2009 Dec [cited 2020 Sep 9]; 25:275-283. doi: 10.1007/s10453-009-9132-8. Available from: https://link.springer.com/article/10.1007%2Fs10453-009-9132-8.
Pain JC. Benford’s law and complex atomic spectra. Physical Review E. [serial on Internet]. 2008 Jan [cited 2020 Sep 7]; 77(1):1-8. doi: 10.1103/physreve.77.012102. Available from: https://arxiv.org/abs/0801.0946.
Diekmann A. Not the First Digit! Using Benford's Law to Detect Fraudulent Scientif ic Data. Journal of Applied Statistics. [serial on Internet]. 2007 May [cited 2020 Sep 9]; 34(3):321-329. doi: 10.1080/02664760601004940. Available from: https://www.tandfonline.com/doi/abs/10.1080/02664760601004940
Khosravani A y Rasinariu C. Emergence of Benford’s law in music. Cornell University. Physics and Society ArXiv. [serial on Internet]. 2018 Nov [cited 2020 Sep 12]; 2:1-10. doi: 10.18642/JMSAA_7100122017. Available from: https://arxiv.org/abs/1805.06506
Zhang J. Testing Case Number of Coronavirus Disease 2019 in China with Newcomb-Benford Law. arXIv: physics.soc.ph. [serial on Internet]. 2020 Feb [cited 2020 Sep 13]; 1-7. Available from: https://arxiv.org/abs/2002.05695
Koch C, Okamura K. Benford’s Law and COVID-19 Reporting. Eco Lett. [serial on Internet]. 2020 Nov [cited 2020 Sep 12];109573(196):1-4. doi: 10.1016/j.econlet.2020.109573. Available from: https://www.sciencedirect.com/science/article/pii/S0165176520303475.
Lee KB, Sumin H, Yeasung J. COVID-19, flattening the curve, and Benford’s law. Physica A. [serial on Internet]. 2020 Dec [cited 2020 Sep 12]; 559:125090. doi: 10.1016/j.physa.2020.125090. Available from: https://pubmed.ncbi.nlm.nih.gov/32834438/.
Nigrini M. J. The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. [doctoral thesis]. Cincinnati, OH: University of Cincinnati. 1992.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Paul Jara-Ortega
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.