The Number of confirmed cases of covid-19 in ecuador, identified by province of attention, complies with the distribution of the newcomb-benford law
DOI:
https://doi.org/10.29166/rfcmq.v46i2.3094Keywords:
COVID-19, epidemiological monitoring, mathematical conceptsAbstract
Abstract
Background: The epidemiological data of COVID-19, from China, the United States, South Korea, England, Spain, Italy, Germany, Holland and Sweden are adjusted to the distribution of the Newcomb-Benford Law (LNB), which would indicate that there is no falsification of data. there is no report made with epidemiological data from Ecuador.
Objective: To know if the data provided by the Ministry of Public Health (MSP) of Ecuador, with respect to the confirmed cases with COVID-19 by province of care, are adjusted to LNB.
Material and methods: The epidemiological database of the Ministry of Public Health of Ecuador was used, where the LNB was applied to the epidemiological data and then the Chi-Square test of goodness of fit was applied.
Results: A p value of 0.872 was obtained, which is greater than the significance value α = 0.05 and a Chi-square value = 3.82722, which is less than the critical value of Chi-square 15.5073.
Conclusion: The null hypothesis was accepted, assuming that the epidemiological data do conform to the LNB and therefore there would be no falsified data.
Downloads
Metrics
References
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA [serial on Internet]. 2020 Feb [cited 2020 Sep 7]; 323(13): [1239-1242]. doi: https://doi.org/10.1001/ jama.2020.2648. Available from; https://jamanetwork.com/journals/jama/fullarticle/2762130.
Rabaan Ali, Al-Ahmed Shamsah, Haque Shafiul, Sah Ranjit, Tiwari Ruchi, Yashpal Singh, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: a comparative overview. Infez. Med [serial on Internet]. 2020 Jan [cited 2020 Sep 22]; 28(2):174-84. Available from: https://pubmed.ncbi.nlm.nih.gov/32275259/#:~:text=Since%20the%20SARS%2DCoV%2D2,CoV%2C%20they%20share%20several%20similarities.&text=The%20presence%20of%20a%20furin,compared%20to%20other%20beta%20coronaviruses.
Chen, Yu, Liu Qianyun y Guo Deyin. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. [serial on Internet]. 2020 Apr [cited 2020 Sep 8]; 92(4):418-423. doi: 10.1002/jmv.25681. Available from: https://pubmed.ncbi.nlm.nih.gov/31967327/.
Dae-Gyun, Ahn Shin, Hye-Jin Kim, Mi-Hwa Sunhee, Lee Kim, Hae-Soo Myoung et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. [serial on Internet]. 2020 Mar [cited 2020 Sep 8]; 30(3):313-24. doi: 10.4014/jmb.2003.03011. Available from: https://pubmed.ncbi.nlm.nih.gov/32238757/.
Guo Yan-Rong, Qing-Dong Cao, Zhong-Si Hong, Yuan-Yang Tan Chen, Shou-Deng Jin, Hong-Jun Tan et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID 19) outbreak – an update on the status. Mil. Med. Res. [serial on Internet]. 2020 Mar [cited 2020 Sep 12]; 7(1):11. doi: 10.1186/s40779-020-00240-0. Available from: https://mmrjournal.biomedcentral.com/articles/10.1186/s40779-020-00240-0.
Hussin A. Rothan. y N. Byrareddy Siddappa. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. [serial on Internet]. 2020 May [cited 2020 Sep 11]; 109:1024-33. doi: 10.1016/j.jaut.2020.102433. Available from: https://www.sciencedirect.com/science/article/pii/S0896841120300469.
Kannan S, P. Shaik, Syed-Ali Sheeza A y Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur. Rev. Med. Pharmacol. Sci. [serial on Internet]. 2020 Feb [cited 2020 Sep 11]; 24(4):2006-2011. doi: 10.26355/eurrev_202002_20378. Available from: https://www.europeanreview.org/article/20378.
Pan A, Liu Li, Wang Chaolong, Guo Huan, Hao Xingjie, Wang Qi, et al. Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China. JAMA. [serial on Internet]. 2020 May [cited 2020 Sep 12]; 323(19):1915-1923. doi: 10.1001/jama.2020.6130. Available from: https://jamanetwork.com/journals/jama/fullarticle/2764658
Rothe Camila, Schunk Mirjam, Sothmann Peter, Bretzel Gisela, Guenter Froeschl, Wallrauch Claudia et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. [serial on Internet]. 2020 Mar [cited 2020 Sep 12]; 382(10):970-971. doi: 10.1056/NEJMc2001468. Available from: https://www.nejm.org/doi/full/10.1056/NEJMc2001468.
Ministerio de Salud Pública (MSP) del Ecuador [Internet]. Actualización de casos de coronavirus en Ecuador. 2020a [citado 2020 Oct 17]. Disponible en: https://www.salud.gob.ec/actualizacion-de-casos-de-coronavirus-en-ecuador/.
Ministerio de Salud Pública (MSP) del Ecuador [Internet]. 2020b. Boletines epidemiológicos coronavirus por semanas. 2020b [citado 2020 Sep 27]. Disponible en: https://www.salud.gob.ec/boletines-epidemiologicos-coronavirus-por-semanas/.
Newcomb Simon. Note on the frecuency of use of the differents digits in natural numbers. American Journal of Mathematics. [serial on Internet]. 1881; [cited 2020 Sep 3] 4(1):34-40. Available from: http://www.uvm.edu/pdodds/files/papers/others/1881/newcomb1881a.pdf.
Benford F. The law of anomalous numbers. Proceedings of the American Philosophical Society. JSTOR. [serial on Internet]. 1938 Mar [cited 2020 Sep 2]; 78(4):551-572. Available from: https://www.jstor.org/stable/984802?seq=1.
Morales L, Zuñiga M. Sistema utilizando la Ley de Benford para detectar posibles fraudes electorales en las elecciones convocadas en Ecuador [Tesis de grado]. Quito: Escuela Politécnica Nacional. Facultad de Ingeniería de Sistemas; 2010. [citado 2020 Sep 14]. Disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/2547/1/CD-3241.pdf.
Cabeza-García, PM. Aplicación de la ley de Benford en la detección de fraudes. Universidad y Sociedad. [seriado en Internet]. 2019 Sep [citado 2020 Sep 12]; 11(5):421-427. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202019000500421
Gauvrit-Gauvrit N, Houillon JC, Delahaye J. Generalized Benford’s Law as a Lie Detector. Adv. Cogn. Psychol. [serial on Internet]. 2017 Jun [cited 2020 Sep 10]; 13(2):121-127. doi: 10.5709/acp-0212-x. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504535/.
Gauvrit-Gauvrit N, Delahaye JP. Pourquoi la loi de Benfordn’est pas mystérieuse (Why Benford’s law is not mysterious). Mathematics and Social Sciences. [serial on Internet]. 2008 Jun [cited 2020 Sep 11]; 182(46):7-15. doi: 10.4000/msh.10363. Available from: https://www.researchgate.net/publication/30449338_Pourquoi_la_loi_de_Benford_n'est_pas_mysterieuse.
Hill TP. A Statistical Derivation of the Significant-Digit Law. Statist. Sci. [serial on Internet]. 1995 Nov [cited 2020 Sep 11]; 10(4):354-363. doi: 10.1214/ss/1177009869. Available from: https://projecteuclid.org/euclid.ss/1177009869
Nigrini M. Benford´s Law: Aplications for Forensic Accounting, Auditing, and Fraud Detections. 1st ed. New Jersey: John Wiley & Sons; 2012.
Vega-Flores C. La Ley de Benford y su Aplicación en la Detección de Fraudes Financieros. Revista Varianza. [seriado en Internet]. 2012 Nov [citado 2020 Sep 12]; 9:5-7. Disponible en: http://www.revistasbolivianas.org.bo/scielo.php?script=sci_arttext&pid=S9876-67892012000100003&lng=es&nrm=iso
Martínez R, Canisales C. Ley de Benford y sus aplicaciones. [Tesis de grado]. San Salvador: Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Matemática; 2009. Disponible en: http://ri.ues.edu.sv/id/eprint/12497/1/19200765.pdf.
Hill TP. Random-number guessing and the first digit phenomenon. Psychol Rep. [serial on Internet]. 1988 Jun [cited 2020 Sep 11]; 3(62):967-971. doi: https://doi.org/10.2466/pr0.1988.62.3.967. Available from: https://journals.sagepub.com/doi/10.2466/pr0.1988.62.3.967.
Castañeda G. La ley de Benford y su aplicabilidad en el análisis forense de resultados electorales. Polít. Gob. [seriado en Internet]. 2011 Ene [citado 2020 Sep 12]; 18(2):297-329. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-20372011000200004&lng=es&nrm=iso>.
Campos LA, Salvo E, Flores-Moya A. Natural taxonomic categories of angiosperms obey Benford’s law, but artificial ones do not. Systematics and Biodiversity. [serial on Internet]. 2016 May [cited 2020 Sep 12]; 5(14):431-440. doi: 10.1080/14772000.2016.1181683. Available from: https://www.tandfonline.com/doi/abs/10.1080/14772000.2016.1181683
Cerri J. A fish rots from the head down: how to use the leading 2 digits of ecological data to detect their falsification. bioRxiv. [serial on Internet]. 2018 Jul [cited 2020 Sep 8];368951 doi: https://doi.org/10.1101/368951. Available from: https://www.biorxiv.org/content/10.1101/368951v1?rss=1
Costas E, López-Rodas V, Toro FJ, Flores-Moya A. The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquatic Botany. [serial on Internet]. 2008 Oct [cited 2020 Sep 8]; 89(3):341-343. doi: 10.1016/j.aquabot.2008.03.011. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304377008000533
Docampo S, Trigo MM, Aira MJ, Cabezudo B, Flores-Moya A. Benford’s law applied to aerobiological data and its potential as a quality control tool. Aerobiologia. [serial on Internet]. 2009 Dec [cited 2020 Sep 9]; 25:275-283. doi: 10.1007/s10453-009-9132-8. Available from: https://link.springer.com/article/10.1007%2Fs10453-009-9132-8.
Pain JC. Benford’s law and complex atomic spectra. Physical Review E. [serial on Internet]. 2008 Jan [cited 2020 Sep 7]; 77(1):1-8. doi: 10.1103/physreve.77.012102. Available from: https://arxiv.org/abs/0801.0946.
Diekmann A. Not the First Digit! Using Benford's Law to Detect Fraudulent Scientif ic Data. Journal of Applied Statistics. [serial on Internet]. 2007 May [cited 2020 Sep 9]; 34(3):321-329. doi: 10.1080/02664760601004940. Available from: https://www.tandfonline.com/doi/abs/10.1080/02664760601004940
Khosravani A y Rasinariu C. Emergence of Benford’s law in music. Cornell University. Physics and Society ArXiv. [serial on Internet]. 2018 Nov [cited 2020 Sep 12]; 2:1-10. doi: 10.18642/JMSAA_7100122017. Available from: https://arxiv.org/abs/1805.06506
Zhang J. Testing Case Number of Coronavirus Disease 2019 in China with Newcomb-Benford Law. arXIv: physics.soc.ph. [serial on Internet]. 2020 Feb [cited 2020 Sep 13]; 1-7. Available from: https://arxiv.org/abs/2002.05695
Koch C, Okamura K. Benford’s Law and COVID-19 Reporting. Eco Lett. [serial on Internet]. 2020 Nov [cited 2020 Sep 12];109573(196):1-4. doi: 10.1016/j.econlet.2020.109573. Available from: https://www.sciencedirect.com/science/article/pii/S0165176520303475.
Lee KB, Sumin H, Yeasung J. COVID-19, flattening the curve, and Benford’s law. Physica A. [serial on Internet]. 2020 Dec [cited 2020 Sep 12]; 559:125090. doi: 10.1016/j.physa.2020.125090. Available from: https://pubmed.ncbi.nlm.nih.gov/32834438/.
Nigrini M. J. The Detection of Income Tax Evasion Through an Analysis of Digital Frequencies. [doctoral thesis]. Cincinnati, OH: University of Cincinnati. 1992.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Paul Jara-Ortega
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.