In silico study of basic leucine zipper transcription factors of Carica papaya L.

Authors

  • Fabio Marcelo Idrovo Espín Universidad Central del Ecuador, Facultad de Ciencias Químicas
  • Karime Domínguez Bucheli Universidad Central del Ecuador, Facultad de Ciencias Químicas
  • Esmeralda Endara Chiriboga Universidad Central del Ecuador, Facultad de Ciencias Químicas

DOI:

https://doi.org/10.29166/quimica.v7i1.2811

Keywords:

bZIP, transcription factors, papaya, caricaceae

Abstract

Transcription factors regulate gene expression by interacting directly with DNA. The class of basic leucine zipper factors or bZIP in arabidopsis has 75 members with similar amino acid domains among all its members. In this work, the papaya genome was studied in silico in order to find possible ortholog bZIP genes in papaya. 37 possible sequences were found, the bioinformatics analysis of the sequences was performed. The sequences were grouped and named similarly to the arabidopsis classification. The results presented below could be used to experimentally evaluate the possible biological function of these genes in papaya.

Downloads

Download data is not yet available.

References

T. R. Hughes in A Handbook of Transcription Factors, Ed.: T. R. Hughes, Springer Science+Bussiness Media B.V., New York, 2011, pp. 1.

Salgado, H.; Martínez-Antonio, A.; Janga, S. FEBS Lett. 2007, 58, 3499‒3506.

Matys, V.; et al. Nuc. Ac. Res. 2006, 34, D108‒D110.

Hakoshima, T. eLS, 2014, 1–5.

Landschulz, W.H.; Johnson, P.F.; McKnight, S.L. 1988. Science. 1998, 240:1759–64.

O'Shea E.K.; Klemm, J.D.; Kim, P.S.; Alber; T. Science. 1991, 254, 539-44.

Jakoby, M.; Weisshaar, B.: Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. Trends Plant Sci. 2002, 7, 3, 106‒111.

Ming, R.; et al. Nature. 2008, 452, 24, 991‒996.

Takata, N.: Saito, S.; Tanaka, C.; Uemura, M. BMC Evol. Biol. 2010, 10,126.

Peraza-Echeverria, S.; Santamaría, J.M.; Fuentes, G.; Menéndez-Cerón, M.: Vallejo-Reyna, M.A.; Herrera-Valencia, V.A. Genes Genom. 2012, 34, 4, 379‒390.

Estrella-Maldonado H.; et al. Plant Cell Tiss. Organ Cult. 2016, 126, 2, 187-204.

Estrella-Maldonado, H.; et al. Plant Growth Regul. 2018, 37, 2, 502–516.

Idrovo-Espín, F.M.; Peraza-Echeverria, S.; Fuentes, G.; Santamaría, J.M. Plant Physiol. Bioch. 2012, 54, 113‒122.

Arizala-Quinto, E.; Viteri, G.; Idrovo-Espín, F. J. Basic App. Gen. 2019, 30, 1, 1–3.

Cevallos-Vilatuña T.; Garzón-Salazar K.; Idrovo-Espín F. Rev. Amazónica Ciencia Tec. 2019, 8, 1, 1–11.

Swarbreck, D.; et al. Nuc. Ac. Res. 2008, D1009–14.

Goodstein, D.M.; el al. Nuc. Ac. Res. 2012, D1178‒86.

FGENESH. http://www.softberry.com/berry

phtml?topic=fgenesh&group=programs&subgroup=gfind (accesado 6 de abril 2020).

Kumar, S.; Stecher, G.; Tamura, K. Molec. Biol. Evol. 2016, 33, 7, 1870‒1974.

Santiago-Sotelo, P.; Ramirez-Prado, J. H. BioTechn. 2012, 53, 5, 299–300.

Altschul S. F.; Madden T. L.; Schäffer A. A.; Zhang J.; Zhang Z.; Miller W.; Lipman D. J.; Nucl. Ac. Res. 1997, 25, 3389–3402.

Uno, Y.; Furihata, T.; Abe, H.; Yoshida, R.;Shinozaki, K.;Yamaguchi-Shinozaki, K. Proc. Natl. Acad. Sci. U. S. A. 2002, 97, 11632–11637.

Choi, H.; Hong, J.; Ha, J.; Kang, J.; Kim, S.Y. J. Biol. Chem. 2000, 21, 1723–1730.

Kang, J.; Choi, H.; Im, M.; Kim, S. Plan Cell. 2002, 14, 343‒357.

Yoshida, T.; et al. Plant J. 2010, 61, 672–685.

Yoshida, T.; et al. Plant Cell Environ. 2015, 38, 35–49.

Liu, J.; Srivastava, R.; Howell, S. Plant Cell. 2007, 19, 4111-4119.

Song, Z.T.; Sun, L.; Lu, S. J.; Tian, Y.; Ding, Y.; Liu, J. Proc. Natl. Acad. Sci. U. S. A. 2015, 3, 112, 9, 2900–2905.

Ehlert, A.; Weltmeier, F.; Wang, X.; Mayer, C.; Smeekens, S.; Carbajosa, V.; Lase, W. Plant J. 2006, 46, 890‒900.

Matiolli, C.C.; et al. Plant Physiol. 2011, 157, 2, 692-705.

Kesarwani, M.; Yoo, J.; Dong, X. Plant Physiol. 2007,144, 1, 336‒346.

Gibalova, A.; Renák, D.; Matczuk, K.; Dupl’áková, N.; Cháb, D.; Twell, D.; Honys, D. Plant Molec. Biol. 2009, 70, 581‒601.

Assunçãoa, A.; et al. Proc. Natl. Acad. Sci. U. S. A. 2010,107, 10296–10301.

Hsieh, W.; Hsieh, H.; Wu, S. Plant Cell. 2012, 24, 3997‒4011.

Huang, L.; Zhang, H.; Zhang, H.; Deng, X.; Wei, N. Plant Sci. 2015, 238, 330‒339.

Tsugama, D.; Liu, S.; Takano, T. PLOS One. 2014, 9, 8, e103930.

Rook, F.; Weisbeek, P.; Smeekens, S. Plant Molec. Biol. 1998, 37, 171‒178.

Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Nature. 2003, 422, 433–438.

Langham, R.J.; Walsh, J.; Dunn, M.; Ko, C.; Goff, S. A.; Freeling, M. Genetics. 2004,166, 2, 935‒945.

Fang, J.; et al. Euphytica, 2016, 209, 323–339

Moitra, J.; Szilák, L.; Krylov, D.; Vinson, C. Biochem. 1997, 36, 41, 12567–12573.

Deppmann, C., Acharya, A.; Rishi, V.; Wobbes, B.; Smeekens, S.; Taparowsky, E.; Vinson, C. Nuc. Ac. Res. 2004, 32, 11, 3435‒3445.

Martínez, M. Comput. Struct. Biotechnol. J. 2013, 8, 10, e201307001.

Published

2021-04-01

How to Cite

Idrovo Espín, F. M., Domínguez Bucheli, K., & Endara Chiriboga, E. (2021). In silico study of basic leucine zipper transcription factors of Carica papaya L. Química Central, 7(1), 1–7. https://doi.org/10.29166/quimica.v7i1.2811

Issue

Section

Biotecnología