Development of a Low-Cost Micropotentiometric Method for the Determination of Titratable Acidity

Authors

  • William Calero Cáceres Central University of Ecuador
  • Pablo Bonilla Central University of Ecuador

DOI:

https://doi.org/10.29166/quimica.v2i1.538

Keywords:

Food Analysis, Electrochemical Analysis, Instrumental Analytical Chemistry, Fruit juices, Soft drinks

Abstract

We developed a low-cost micropotentiometric method for determining titratable acidity in food samples, matrix juices, using readily available materials for construction, such as pure tungsten welds of 1.6 mm x 175 mm, copper wire of 0.1 mm for electrical use, generic multimeter, plastic pipette tips, cotton and silicone. In order to maintain the analytical rigidity, the method was optimized and evaluated statistically by tests of linearity, accuracy, precision, stability, limit of detection and quantification using citric acid as a target analyte. With the new method, the results were evaluated according to the comparative study against the classical potentiometric method with glass electrode through the analysis of the regression line and the statistic t as confirmation, demonstrating its applicability for the analysis of food samples.

Downloads

Download data is not yet available.

Author Biographies

William Calero Cáceres, Central University of Ecuador

Laboratorio de Coloideoquímica, Facultad de Ciencias Químicas, Quito.

Pablo Bonilla, Central University of Ecuador

Laboratorio de Coloideoquímica, Facultad de Ciencias Químicas, Quito.

References

Nielsen, S. (2009). Análisis de los Alimentos. Zaragoza: Acribia.

Baeza, A. (2003). Titulaciones Ácido-Base Potenciométricas a Microescala Total con Microsensores de pH y de Referencia de bajo costo. Rev. Chil. Educ. Cient. , 1 (2).

Skoog, D., & Holler, F. N. (2001). Principios de Análisis Instrumental (Vol. 5ta edición). México: McGraw Hill.

Liu, C., Bocchicchio, B., & Overmyer, P. (1980). A Palladium-Palladium Oxide Miniature pH Electrode. Science , 207 (188-189).

Smirnova, O., & Mikhailova, A. (2000). Potentiometric Parameters of a PVC-NaV6O15-Graphite Electrode. Russ. J. Elec. , 36 (8).

Arnold, M., & Meyerhoff, M. (1984). Ion-Selective Electrodes. Anal. Chem. , 56 (5).

Kurzweil, P. (2009). Metal Oxides and Ion-Exchanfing Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook. Sensors , 9 (4955-4985).

Galwa, N., & El Nahhal, I. (2007). Development of a Novel Solid-State pH Sensor Electrode Based on Titanium Oxide Thin Film as a Indicator Electrode in Potentiometric Acid-Base Titrations in Fused NaNO3 at 350ºC. J. Disper. Sci. Tech. 28 (757-764).

García-González, D., & Aparicio, R. (2002). Sensors: From Biosensors to the Electronic Nose. Grasas y Aceites , 53 (2).

Hughes, R., Ricco, A., Butler, M., & Martin, S. (1991). Chemical Microsensors. Science , 254 (74-79).

Aytaç, A., Kabasakaloğlu, M., Sari, B., & Talu, M. (2004). Ion-Selective Electrodes Prepared with Polyaniline Membranes. Russ. J. of Elec., 40 (7).

Sotomayor, P., Raimundo, I., Zarbin, A., Rohwedder, J., Oliveira, G., & Alves, O. (2001). Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite. Sens. Act. B , 74 (157-162).

Caldwell, P. (1954). An Investigation of the Intracellular pH of Crab Muscle Fibres by Means of Micro-Glass and Micro-Tungsten Electrodes. J. Physiol. , 126 (169-180).

Dimitrakopoulos, L., Dimitrakopoulos, T., Alexander, P., Logic, D., & Hibbert, B. (1998). A Tungsten Oxide Coated Wire Electrode Used as a pH Sensor in Flow Injection Potentiometry. Anal. Commun. , 35 (395-398).

Baeza, A. (2003). Microbureta a Microescala Total para Titulometría. Rev. Chil. Educ. Cient. , 1 (2).

Vargas, J., Baeza, A. U., Rodríguez, J., & Cáceres, L. (2004). Titulaciones Ácido-Base a Microescala Química utilizando Microsensores de pH y Microelectrodo de referencia: Adquisición de datos con nuevas tecnologías. Rev. Chil. Educ. Cient. , 2 (2).

Box, G., & Hunter, W. H. Estadística para Investigadores. México: Reverté.

Miller, J., & Miller, J. (2002). Estadística y Quimiometría para Química Analítica. Madrid: Prentice Hall.

EURACHEM Group. (1998). The Fitness for Purpose of Analytical Methods. Middlesex: Eurachem Working Group.

Angelini, N. (2005). Validación de Métodos Químicos Desarrollados en el Laboratorio. Buenos Aires: FAO.

Published

2011-11-01

How to Cite

Calero Cáceres, W., & Bonilla, P. (2011). Development of a Low-Cost Micropotentiometric Method for the Determination of Titratable Acidity. Química Central, 2(1), 3–12. https://doi.org/10.29166/quimica.v2i1.538

Issue

Section

Reaprovechamiento de materiales