Revisión acerca de biosensores basados en grafeno para la detección del SARSCOV- 2.

Contenido principal del artículo

Daniel Mena-Lizano
Eliana Acurio
Richard Pachacama-Choca
Gabriela Tubón-Usca

Resumen

Debido a la emergencia sanitaria producida por el SARS-CoV-2 que ha generado una pandemia, en este trabajo se propone una revisión sobre métodos desarrollados para la detección de Covid-19 basados en biosensores de grafeno, considerando sus propiedades fisicoquímicas. Esta investigación abarca una recopilación y análisis de información sobre biosensores en revistas de alto impacto en los últimos dos años. Para el desarrollo del estudio, se escogieron parámetros como: tiempo de detección, límite de detección, tipo de sensor, proteínas que detecta el biosensor, tipo de grafeno y costo, a fin de comprobar su efectividad. Los resultados analizados demuestran que la mayoría de biosensores funcionalizan el anticuerpo de la proteína S, N o una recombinación de ambas, y, algunos biosensores permiten la detección de hasta 4 tipos de proteínas (proteína reactiva C, IgG, IgM y nucleapside). Varios de los estudios analizados muestran una detección de secuencia especifica del virus y un bajo límite de detección (LOD) que va desde 0,1 fg/mL hasta a 1 fg/mL, lo que permite detectar SARS-CoV-2 a bajas concentraciones. El análisis indica una opción factible para la implementación de biosensores basados en grafeno como alternativa a las pruebas tradicionales.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Mena-Lizano, D., Acurio, E., Pachacama-Choca, R., & Tubón-Usca, G. (2021). Revisión acerca de biosensores basados en grafeno para la detección del SARSCOV- 2. FIGEMPA: Investigación Y Desarrollo, 12(2), 70–84. https://doi.org/10.29166/revfig.v12i2.3519
Sección
Artículos
Biografía del autor/a

Daniel Mena-Lizano, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador.

Daniel Mena Lizano, Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Física, Riobamba, Ecuador.

https://orcid.org/0000-0002-8273-4205daniel.mena@espoch.edu.ec 

Eliana Acurio, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador.

Escuela Politécnica Nacional, Facultad de Ciencias, Departamento de Física, Quito, Ecuador 

https://orcid.org/0000-0002-9630-3342 

Richard Pachacama-Choca, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador.

Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Carrera de Física, Grupo de investigación Physics Research Group (PRG), Riobamba, Ecuador 

https://orcid.org/0000-0003-0007-1901 

Gabriela Tubón-Usca, Escuela Superior Politécnica de Chimborazo. Riobamba, Ecuador.

Escuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Grupo de Investigación en Materiales Avanzados (GIMA), Riobamba, Ecuador

https://orcid.org/0000-0003-3821-4752 

Citas

Abbott, 2021. COVID-19 Ag Rapid Test Device. https://dam.abbott.com/en-gb/panbio/120007883-v1-Panbio-COVID-19-Ag-Nasal-AsymptomaticSe.pdf

Aceituno Bueno, R., 2018. Funcionalización covalente y selectiva de grafeno en ultra alto vacío. Universidad Autónoma de Madrid. http://digital.csic.es/bitstream/10261/162931/1/tesis_RebecaAceitunoBueno.pdf

Ahmad, R., Wolfbeis, O.S., Hahn, Y.B., Alshareef, H.N., Torsi, L., Salama, K.N., 2018. Deposition of nanomaterials: A crucial step in biosensor fabrication. Mater Today Commun;17 pp. 289–321.

Alafeef, M., Dighe, K., Moitra, P. y Pan, D. Rapid, 2020. Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano;14:17028–45. https://dx.doi.org/10.1021/acsnano.0c06392

Ali, M.A., Hu, C., Jahan, S., Yuan, B., Saleh, M.S., Ju, E., et al., 2020. Sensing of COVID‐19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced‐Graphene‐Oxide‐Coated 3D Electrodes. Adv Mater, 33(7), pp.2006647. https://onlinelibrary.wiley.com/doi/10.1002/adma.202006647

Arrieta-Almario, Á.A., Tarazona-Cáceres, R.L., 2014. Sistema multipotenciostato basado en instrumentación virtual. Ing invest y tecnol,15(3), pp.331–7. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432014000300001

Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L., et al., 2020. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA - J Am Med Assoc;323(14, pp.1406–7. https://pubmed.ncbi.nlm.nih.gov/32083643/

Bertrand, M.J., 1998. Handbook of Instrumental Techniques for Analytical Chemistry Edited by Frank A. Settle. ISBN 0-13-177338-0. J Am Chem Soc. 120(26), pp.6633–6633. https://pubs.acs.org/doi/abs/10.1021/ja975671k

Bio-Rad, 2020. Platelia SARS-CoV-2 Total Ab. https://commerce.bio-rad.com/webroot/web/pdf/inserts/CDG/en/16008267_2020_04_EN.pdf

Chen, X., Liu, Y., Fang, X., Li, Z., Pu, H., Chang, J., et al., 2019. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens Bioelectron;126, pp.664–71.

Davis, C., Logan, N., Tyson, G., Orton, R., Harvey, W., Haughney, J., et al., 2021. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv; https://www.medrxiv.org/content/10.1101/2021.06.23.21259327v1

De Eguilaz, M.R., Cumba, L.R. y Forster, R.J., 2020. Electrochemical detection of viruses and antibodies: A mini review. Electrochem commun;116:106762. /pmc/articles/PMC7247998/

Diao, B., Wen, K., Chen, J., Liu, Y., Yuan, Z., Han, C., et al., 2020. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. MedRxiv, https://www.medrxiv.org/content/10.1101/2020.03.07.20032524v2

Díaz-Castrillón, F., y Toro-Montoya, A., 2020. SARS-CoV-2/COVID-19: el virus, la enfermedad y la pandemia. Med Lab;24(3). https://medicinaylaboratorio.com/index.php/myl/article/view/268/256

Dreyer, D.R., Park, S., Bielawski, W. y Ruoff, R.S., 2009. The chemistry of graphene oxide. Chem Soc Rev; 39(1), pp.228–40.

El Universo, 2021. Varios países vuelven a la normalidad y tratan de dejar las mascarillas, pero siguen alertas para reinstaurar restricciones si es necesario. https://www.eluniverso.com/noticias/internacional/varios-paises-vuelven-a-la-normalidad-y-tratan-de-dejar-las-mascarillas-pero-siguen-alertas-para-reinstaurar-restricciones-si-es-necesario-nota/

Erba Mannheim, 2020. ERBAlisa COVID-19 IgG. The Netherlands. https://erbalisacovid19.erbamannheim.com/getattachment/Home/text-content/uvod/ErbaLisa-COVID19_IgG_Intencion-de-Uso.pdf.aspx?lang=es-ES

Euroimmun, 2020. Anti-SARS-CoV-2 Elisa (IgG). Lübeck. https://www.coronavirus-diagnostics.com/documents/Indications/Infections/Coronavirus/EI_2606_D_UK_A.pdf

Gallach Pérez, D., 2020. Grafeno: concepto y aplicaciones. UE Steam Essentials. Madrid: Universidad Europea. https://projectbasedschool.universidadeuropea.es/escuela/escuela/steam_essentials

Ghany, N.A.A., Elsherif, S.A., Handal, H.T., 2017. Revolution of Graphene for different applications. State-of-the-art; 9(June, pp.93–106.

Gong, H., Chen, F., Huang, Z., Gu, Y., Zhang, Q., Chen, Y., et al., 2019. Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. ACS Nano;13(3), pp.3714–22. https://doi.org/10.1021/acsnano.9b00911

Gong, J., Dong, H., Xia, Q., Huang, Z., Wang, D., Zhao, Y., et al., 2020. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. MedRxiv. https://www.medrxiv.org/content/10.1101/2020.02.25.20025643v1

Green, K., Winter, A., Dickinson, R., Graziadio, S., Wolff, R., Mallett, S., et al., 2020. ¿Qué pruebas podrían usarse potencialmente para la detección, el diagnóstico y el seguimiento de COVID-19 y cuáles son sus ventajas y desventajas? - El Centro de Medicina basada en la evidencia. https://www.cebm.net/covid-19/what-tests-could-potentially-be-used-for-the-screening-diagnosis-and-monitoring-of-covid-19-and-what-are-their-advantages-and-disadvantages/

Herradón, B., 2020. Graphene and COVID-19: scientific and social aspects. Grupo Español del Carbón; pp 4–15. http://www.gecarbon.org/boletines/articulos/BoletinGEC_057-art1.pdf

Hinnemo, M., Zhao, J., Ahlberg, P., Hägglund, C., Djurberg, V., Scheicher, R.H., et al., 2017. On Monolayer Formation of Pyrenebutyric Acid on Graphene. Langmuir, 33(15, pp.3588–93. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b04237

IEEE/IEC, 2011.Draft Standard for Large Scale Manufacturing of Nanoelectronics. IEC 62659 Ed1, pp. 1–13.

Jacofsky, D., Jacofsky, E.M. y Jacofsky, M., 2020. Understanding Antibody Testing for COVID-19. J Arthroplasty, 35(7), pp.S74–81. https://doi.org/10.1016/j.arth.2020.04.055.

Ji, T., Liu, Z., Wang, G.Q., Guo, X., Akbar khan, S., Lai, C., et al., 2020. Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron;166:112455.

Johns, J.E. y Hersam, M.C., 2013. Atomic Covalent Functionalization of Graphene. Acc Chem Res, 46(1), pp.86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546170/

Kantor, I.N., Lüthy, I.A. y Ritacco, V., 2021. Las variantes de SARS-COV-2 y la llamada resistencia a las vacunas. Medicina (B Aires);81(3). https://www.reactgroup.org/toolbox/

Ke, G., Su, D., Li, Y., Zhao, Y., Wang, H., Liu, W., et al., 2020. An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Sci China Mater;64(3), pp.739–47. https://doi.org/10.1007/s40843-020-1577-y

Kuo, C.J, Chiang, H.C, Tseng, C.A., Chang, C.F., Ulaganathan, R.K., Ling, T.T., et al., 2018. Lipid-Modified Graphene-Transistor Biosensor for Monitoring Amyloid-β Aggregation. ACS Appl Mater Interfaces;10(15), pp.12311–6. https://doi.org/10.1021/acsami.8b01917

Kwong Hong Tsang, D., Lieberthal, T.J., Watts, C., Dunlop, I.E., Ramadan, S., del Rio Hernandez, A.E., et al., 2019. Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes. Sci Rep, 9(1), pp.1–10. https://doi.org/10.1038/s41598-019-50412-9

Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al., 2020. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J Med Virol; 92(9), pp.1518–24. doi: 10.1002/jmv.25727

Ling Ling, T., Ahmad, M., Yook Heng, L., Chee Seng, T., 2011. The effect of multilayer gold nanoparticles on the electrochemical response of ammonium ion biosensor based on alanine dehydrogenase enzyme. J Sensors. https://www.hindawi.com/journals/js/2011/754171/

Liu, E.Y., Jung, S., Weitz, D.A., Yi, H., Choi, C.H., 2018. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab Chip;18(2), pp.323–34. https://pubmed.ncbi.nlm.nih.gov/29242870/

Liu, J., Chen, X., Wang, Q., Xiao, M., Zhong, D., Sun, W., et al., 2019. Ultrasensitive Monolayer MoS 2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett;19(3), pp.1437–44. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b03818

Lizarazo Salcedo, C., González Jiménez, E., Arias Portela, C., Guarguati Ariza, J., 2018. Nanomateriales: un acercamiento a lo básico. Med Segur Trab (Madr); 64(251), pp. 109–18. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2018000200109

Lu, CH., Yang, H.H., Zhu, C.L., Chen, X. y Chen, G.N., 2009. A graphene platform for sensing biomolecules. Angew Chemie - Int Ed, 48(26), pp.4785–7. https://pubmed.ncbi.nlm.nih.gov/19475600/

Luminex Corporation, 2020. NxTAG® CoV Extended Panel. https://www.luminexcorp.com/nxtag-cov-extended-panel/

Maio, F. De, Palmieri, V., Babini, G., Augello, A., Palucci, I., Perini, G., et al., 2020. Graphene nanoplatelet and Graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.09.16.20194316

Mao, S., 2018. Graphene Field-Effect Transistor Sensors . Graphene Bioelectronics. Shanghai: Elsevier Inc., 113–132 p. https://www.sciencedirect.com/science/article/pii/B9780128133491000056

Menarini Diagnostics, 2020. VITAPCR TM plataforma Características. https://www.menarinidiagnostics.com/en-us/Home/Laboratory-products/COVID-19/Viral-RNA-Detection/VitaPCRTM-platform/Features

Mico BioMed, 2021. Veri-Q PCR 316 coronavirus disease 2019(COVID-19) Detection Kit nCoV-QS . Instructions for use. https://extranet.who.int/pqweb/sites/default/files/documents/eul_0495_188_00_nCoV-QS_EN_IFU_v4.pdf

Moitra, P., Alafeef, M., Dighe, K., Frieman, M.B., y Pan, D., 2020. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano;14(6), pp. 7617–27. https://dx.doi.org/10.1021/acsnano.0c03822

Mojsoska, B., Larsen, S., Olsen, D.A., Madsen, J.S., Brandslund, I. y Alatraktchi, F.A., 2021. Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor. Sensors;21(2), pp.390. https://www.mdpi.com/1424-8220/21/2/390

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., 2004. Electric field effect in atomically thin carbon films. Sci; 306(5696), pp.666–9. https://pubmed.ncbi.nlm.nih.gov/15499015/

Ochoa Azze, R., 2012. Técnicas inmunoenzimáticas para ensayos clínicos de vacunas y estudios inmunoepidemiológicos. 1a ed. Betancourt López V, editor. La Habana: Finlay. https://www.paho.org/cub/index.php?option=com_docman&view=download&alias=742-pubfinlay-librotecinmunoparaeclinvacunas2012&Itemid=226

Pérez Abreu, M., Gómez Tejeda, J., y Dieguez Guach, R., 2020. Características clínico-epidemiológicas de la COVID-19. Rev Habanera Ciencias Médicas;19(2). http://www.revhabanera.sld.cu/index.php/rhab/article/view/3254/2562

Phelan, B., 2021. Semiconductor Cleanroom - Design Requirements. Advancete. https://www.advancetecllc.com/post/semiconductor-cleanroom-design-requirements

Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S.y Mishra, M., 2018. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem;8 pp. 123–137.

Public Health England, 2020. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA (IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies. London; https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_IgG__1_.pdf

Qiagen, 2020. QIAstat-Dx Respiratory SARS-CoV-2 Panel. https://www.qiagen.com/us/products/diagnostics-and-clinical-research/infectious-disease/qiastat-dx-syndromic-testing/qiastat-dx-eua-us/

Qiu, G., Gai, Z., Tao, Y., Schmitt, J., Kullak-Ublick, G.A, y Wang, J., 2020. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano, 14(5), pp.5268–77. https://pubs.acs.org/doi/abs/10.1021/acsnano.0c02439

Quidel, 2021. Sofia Antígeno del SARS FIA. https://www.quidel.com/immunoassays/rapid-sars-tests/sofia-sars-antigen-fia

Rafer, 2020. Cellex qSARS-CoV-2 IgG/IgM Cassette Rapid Test. https://www.rafer.es/sites/default/files/cellex_qsars-cov-2_iggigm.pdf

Roche, 2020. Elecsys ® Anti-SARS-CoV-2 Inmunoensayo para la detección cualitativa de anticuerpos (incl. IgG) contra el SARS-CoV-2. https://diagnostics.roche.com/global/en/products/params/elecsys-anti-sars-cov-2.html

Roche, 2020. SARS-CoV-2 Rapid Antigen Test Roche Diagnostic.

SD Biosensor, 2021. Standar Q COVID-19 Ag. http://www.sdbiosensor.com/product/product_view?product_no=241

Seo, G., Lee, G., Kim, M.J., Baek, S-H., Choi, M., Ku, B., et al., 2020. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano;14:5142. https://dx.doi.org/10.1021/acsnano.0c02823

Sethuraman, N., Jeremiah, S.S. y Ryo, A., 2020. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA - J Am Med Assoc; 323(22), pp.2249–51. https://pubmed.ncbi.nlm.nih.gov/32374370/

Sharpless, N., 2021. Los anticuerpos contra el coronavirus evitan la reinfección - Instituto Nacional del Cáncer. Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/noticias/temas-y-relatos-blog/2021/anticuerpos-coronavirus-protegen-contra-futuras-infecciones

Smith, A.T., LaChance, A., Zeng, S., Liu, B. y Sun, L, 2019. Synthesis, properties , and applications of graphene oxide / reduced graphene oxide and their nanocomposites. Nano Mater Sci;1(1), pp.31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

Tene, T., Tubon Usca, G., Guevara, M., Molina, R., Veltri, F., Arias, M., ... & Vacacela Gomez, C., 2020. Toward large-scale production of oxidized graphene. Nanomaterials, 10(2), 279. https://www.mdpi.com/634944

Tolosa, A., 2020. Coronavirus SARS-CoV-2: estructura, mecanismo de infección y células afectadas. Genética Médica News. https://genotipia.com/genetica_medica_news/coronavirus-estructura-infeccion-celulas/

Torrente Rodríguez, R., Heather, L., Tu, J., Min, J., Yang, Y., Xu, C., et al., 2020. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter;3:1981–98. https://www.sciencedirect.com/science/article/pii/S2590238520305531

Valencia Giraldo, A., 2011. El grafeno. Rev Colomb Mater (1), pp. 24. https://revistas.udea.edu.co/index.php/materiales/article/view/9172

Vikesland, P.J., 2018. Nanosensors for water quality monitoring. Nat Nanotechnol, 13(8), pp.651–60. https://pubmed.ncbi.nlm.nih.gov/30082808/

World Health Organization, 2021. Weekly Operational Update on COVID-19. World Health Organization. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---16-august-2021

Wu, G., Tang, X., Meyyappan, M., y Lai, K.W.C., 2015. Chemical functionalization of graphene with aromatic molecule. IEEE-NANO - 15th International Conference on Nanotechnology. Roma: Institute of Electrical and Electronics Engineers Inc.; 2015. p. 1324–7.

Young, S.L., Kellon, J.E. y Hutchison, J.E., 2016. Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to Enhance Electron Transfer and Increase Electrochemically Active Surface Area. J Am Chem Soc. 138(42), pp.13975–84. https://pubs.acs.org/doi/abs/10.1021/jacs.6b07674

Yüce, M., Filiztekin, E. y Özkaya, K.G., 2021. COVID-19 diagnosis —A review of current methods. Biosens Bioelectron, pp. 172. https://pubmed.ncbi.nlm.nih.gov/33126180/

Zhang, X., Qi, Q., Jing, Q., Ao, S., Zhang, Z., Ding, M., et al., 2020. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor. https://arxiv.org/abs/2003.12529

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al., 2019. A Novel Coronavirus from Patients with Pneumonia in China. N Engl J Med.;382(8), pp.727–33. https://doi.org/10.1056/NEJMoa2001017