Review about graphene- based biosensors for detection of SARS-COV-2
Main Article Content
Abstract
Due to the health emergency produced by SARS-CoV-2, which has generated a pandemic, this work proposes a review on developed methods for the detection of Covid-19 based on graphene biosensors, considering their physicochemical properties. This research includes a compilation and analysis of information on this type of biosensors published in high-impact journals in recent years. For the development of the study, parameters such as detection time, detection limit, type of sensor, proteins that the biosensor detects, type of graphene, and cost were chosen to verify its effectiveness. The analyzed results demonstrate that most biosensors functionalizing the antibody of S, N protein or recombination of both, and some biosensors allow the detection of up to 4 types of proteins (C-reactive protein, IgG, IgM, and nucleapside). Several of the analyzed studies show a specific sequence detection of the virus and a low limit of detection (LOD) ranging from 0.1 fg/mL to 1 fg/mL, which allows detecting SARS-CoV-2 at low concentrations. In conclusion, the analysis indicates a feasible option for the implementation of graphene-based biosensors as an alternative to traditional test.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abbott, 2021. COVID-19 Ag Rapid Test Device. https://dam.abbott.com/en-gb/panbio/120007883-v1-Panbio-COVID-19-Ag-Nasal-AsymptomaticSe.pdf
Aceituno Bueno, R., 2018. Funcionalización covalente y selectiva de grafeno en ultra alto vacío. Universidad Autónoma de Madrid. http://digital.csic.es/bitstream/10261/162931/1/tesis_RebecaAceitunoBueno.pdf
Ahmad, R., Wolfbeis, O.S., Hahn, Y.B., Alshareef, H.N., Torsi, L., Salama, K.N., 2018. Deposition of nanomaterials: A crucial step in biosensor fabrication. Mater Today Commun;17 pp. 289–321.
Alafeef, M., Dighe, K., Moitra, P. y Pan, D. Rapid, 2020. Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano;14:17028–45. https://dx.doi.org/10.1021/acsnano.0c06392
Ali, M.A., Hu, C., Jahan, S., Yuan, B., Saleh, M.S., Ju, E., et al., 2020. Sensing of COVID‐19 Antibodies in Seconds via Aerosol Jet Nanoprinted Reduced‐Graphene‐Oxide‐Coated 3D Electrodes. Adv Mater, 33(7), pp.2006647. https://onlinelibrary.wiley.com/doi/10.1002/adma.202006647
Arrieta-Almario, Á.A., Tarazona-Cáceres, R.L., 2014. Sistema multipotenciostato basado en instrumentación virtual. Ing invest y tecnol,15(3), pp.331–7. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432014000300001
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L., et al., 2020. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA - J Am Med Assoc;323(14, pp.1406–7. https://pubmed.ncbi.nlm.nih.gov/32083643/
Bertrand, M.J., 1998. Handbook of Instrumental Techniques for Analytical Chemistry Edited by Frank A. Settle. ISBN 0-13-177338-0. J Am Chem Soc. 120(26), pp.6633–6633. https://pubs.acs.org/doi/abs/10.1021/ja975671k
Bio-Rad, 2020. Platelia SARS-CoV-2 Total Ab. https://commerce.bio-rad.com/webroot/web/pdf/inserts/CDG/en/16008267_2020_04_EN.pdf
Chen, X., Liu, Y., Fang, X., Li, Z., Pu, H., Chang, J., et al., 2019. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens Bioelectron;126, pp.664–71.
Davis, C., Logan, N., Tyson, G., Orton, R., Harvey, W., Haughney, J., et al., 2021. Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv; https://www.medrxiv.org/content/10.1101/2021.06.23.21259327v1
De Eguilaz, M.R., Cumba, L.R. y Forster, R.J., 2020. Electrochemical detection of viruses and antibodies: A mini review. Electrochem commun;116:106762. /pmc/articles/PMC7247998/
Diao, B., Wen, K., Chen, J., Liu, Y., Yuan, Z., Han, C., et al., 2020. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by Detection of Nucleocapsid Protein. MedRxiv, https://www.medrxiv.org/content/10.1101/2020.03.07.20032524v2
Díaz-Castrillón, F., y Toro-Montoya, A., 2020. SARS-CoV-2/COVID-19: el virus, la enfermedad y la pandemia. Med Lab;24(3). https://medicinaylaboratorio.com/index.php/myl/article/view/268/256
Dreyer, D.R., Park, S., Bielawski, W. y Ruoff, R.S., 2009. The chemistry of graphene oxide. Chem Soc Rev; 39(1), pp.228–40.
El Universo, 2021. Varios países vuelven a la normalidad y tratan de dejar las mascarillas, pero siguen alertas para reinstaurar restricciones si es necesario. https://www.eluniverso.com/noticias/internacional/varios-paises-vuelven-a-la-normalidad-y-tratan-de-dejar-las-mascarillas-pero-siguen-alertas-para-reinstaurar-restricciones-si-es-necesario-nota/
Erba Mannheim, 2020. ERBAlisa COVID-19 IgG. The Netherlands. https://erbalisacovid19.erbamannheim.com/getattachment/Home/text-content/uvod/ErbaLisa-COVID19_IgG_Intencion-de-Uso.pdf.aspx?lang=es-ES
Euroimmun, 2020. Anti-SARS-CoV-2 Elisa (IgG). Lübeck. https://www.coronavirus-diagnostics.com/documents/Indications/Infections/Coronavirus/EI_2606_D_UK_A.pdf
Gallach Pérez, D., 2020. Grafeno: concepto y aplicaciones. UE Steam Essentials. Madrid: Universidad Europea. https://projectbasedschool.universidadeuropea.es/escuela/escuela/steam_essentials
Ghany, N.A.A., Elsherif, S.A., Handal, H.T., 2017. Revolution of Graphene for different applications. State-of-the-art; 9(June, pp.93–106.
Gong, H., Chen, F., Huang, Z., Gu, Y., Zhang, Q., Chen, Y., et al., 2019. Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. ACS Nano;13(3), pp.3714–22. https://doi.org/10.1021/acsnano.9b00911
Gong, J., Dong, H., Xia, Q., Huang, Z., Wang, D., Zhao, Y., et al., 2020. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. MedRxiv. https://www.medrxiv.org/content/10.1101/2020.02.25.20025643v1
Green, K., Winter, A., Dickinson, R., Graziadio, S., Wolff, R., Mallett, S., et al., 2020. ¿Qué pruebas podrían usarse potencialmente para la detección, el diagnóstico y el seguimiento de COVID-19 y cuáles son sus ventajas y desventajas? - El Centro de Medicina basada en la evidencia. https://www.cebm.net/covid-19/what-tests-could-potentially-be-used-for-the-screening-diagnosis-and-monitoring-of-covid-19-and-what-are-their-advantages-and-disadvantages/
Herradón, B., 2020. Graphene and COVID-19: scientific and social aspects. Grupo Español del Carbón; pp 4–15. http://www.gecarbon.org/boletines/articulos/BoletinGEC_057-art1.pdf
Hinnemo, M., Zhao, J., Ahlberg, P., Hägglund, C., Djurberg, V., Scheicher, R.H., et al., 2017. On Monolayer Formation of Pyrenebutyric Acid on Graphene. Langmuir, 33(15, pp.3588–93. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b04237
IEEE/IEC, 2011.Draft Standard for Large Scale Manufacturing of Nanoelectronics. IEC 62659 Ed1, pp. 1–13.
Jacofsky, D., Jacofsky, E.M. y Jacofsky, M., 2020. Understanding Antibody Testing for COVID-19. J Arthroplasty, 35(7), pp.S74–81. https://doi.org/10.1016/j.arth.2020.04.055.
Ji, T., Liu, Z., Wang, G.Q., Guo, X., Akbar khan, S., Lai, C., et al., 2020. Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron;166:112455.
Johns, J.E. y Hersam, M.C., 2013. Atomic Covalent Functionalization of Graphene. Acc Chem Res, 46(1), pp.86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546170/
Kantor, I.N., Lüthy, I.A. y Ritacco, V., 2021. Las variantes de SARS-COV-2 y la llamada resistencia a las vacunas. Medicina (B Aires);81(3). https://www.reactgroup.org/toolbox/
Ke, G., Su, D., Li, Y., Zhao, Y., Wang, H., Liu, W., et al., 2020. An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Sci China Mater;64(3), pp.739–47. https://doi.org/10.1007/s40843-020-1577-y
Kuo, C.J, Chiang, H.C, Tseng, C.A., Chang, C.F., Ulaganathan, R.K., Ling, T.T., et al., 2018. Lipid-Modified Graphene-Transistor Biosensor for Monitoring Amyloid-β Aggregation. ACS Appl Mater Interfaces;10(15), pp.12311–6. https://doi.org/10.1021/acsami.8b01917
Kwong Hong Tsang, D., Lieberthal, T.J., Watts, C., Dunlop, I.E., Ramadan, S., del Rio Hernandez, A.E., et al., 2019. Chemically Functionalised Graphene FET Biosensor for the Label-free Sensing of Exosomes. Sci Rep, 9(1), pp.1–10. https://doi.org/10.1038/s41598-019-50412-9
Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al., 2020. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J Med Virol; 92(9), pp.1518–24. doi: 10.1002/jmv.25727
Ling Ling, T., Ahmad, M., Yook Heng, L., Chee Seng, T., 2011. The effect of multilayer gold nanoparticles on the electrochemical response of ammonium ion biosensor based on alanine dehydrogenase enzyme. J Sensors. https://www.hindawi.com/journals/js/2011/754171/
Liu, E.Y., Jung, S., Weitz, D.A., Yi, H., Choi, C.H., 2018. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation. Lab Chip;18(2), pp.323–34. https://pubmed.ncbi.nlm.nih.gov/29242870/
Liu, J., Chen, X., Wang, Q., Xiao, M., Zhong, D., Sun, W., et al., 2019. Ultrasensitive Monolayer MoS 2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett;19(3), pp.1437–44. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b03818
Lizarazo Salcedo, C., González Jiménez, E., Arias Portela, C., Guarguati Ariza, J., 2018. Nanomateriales: un acercamiento a lo básico. Med Segur Trab (Madr); 64(251), pp. 109–18. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465-546X2018000200109
Lu, CH., Yang, H.H., Zhu, C.L., Chen, X. y Chen, G.N., 2009. A graphene platform for sensing biomolecules. Angew Chemie - Int Ed, 48(26), pp.4785–7. https://pubmed.ncbi.nlm.nih.gov/19475600/
Luminex Corporation, 2020. NxTAG® CoV Extended Panel. https://www.luminexcorp.com/nxtag-cov-extended-panel/
Maio, F. De, Palmieri, V., Babini, G., Augello, A., Palucci, I., Perini, G., et al., 2020. Graphene nanoplatelet and Graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. medRxiv. https://doi.org/10.1101/2020.09.16.20194316
Mao, S., 2018. Graphene Field-Effect Transistor Sensors . Graphene Bioelectronics. Shanghai: Elsevier Inc., 113–132 p. https://www.sciencedirect.com/science/article/pii/B9780128133491000056
Menarini Diagnostics, 2020. VITAPCR TM plataforma Características. https://www.menarinidiagnostics.com/en-us/Home/Laboratory-products/COVID-19/Viral-RNA-Detection/VitaPCRTM-platform/Features
Mico BioMed, 2021. Veri-Q PCR 316 coronavirus disease 2019(COVID-19) Detection Kit nCoV-QS . Instructions for use. https://extranet.who.int/pqweb/sites/default/files/documents/eul_0495_188_00_nCoV-QS_EN_IFU_v4.pdf
Moitra, P., Alafeef, M., Dighe, K., Frieman, M.B., y Pan, D., 2020. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano;14(6), pp. 7617–27. https://dx.doi.org/10.1021/acsnano.0c03822
Mojsoska, B., Larsen, S., Olsen, D.A., Madsen, J.S., Brandslund, I. y Alatraktchi, F.A., 2021. Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor. Sensors;21(2), pp.390. https://www.mdpi.com/1424-8220/21/2/390
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al., 2004. Electric field effect in atomically thin carbon films. Sci; 306(5696), pp.666–9. https://pubmed.ncbi.nlm.nih.gov/15499015/
Ochoa Azze, R., 2012. Técnicas inmunoenzimáticas para ensayos clínicos de vacunas y estudios inmunoepidemiológicos. 1a ed. Betancourt López V, editor. La Habana: Finlay. https://www.paho.org/cub/index.php?option=com_docman&view=download&alias=742-pubfinlay-librotecinmunoparaeclinvacunas2012&Itemid=226
Pérez Abreu, M., Gómez Tejeda, J., y Dieguez Guach, R., 2020. Características clínico-epidemiológicas de la COVID-19. Rev Habanera Ciencias Médicas;19(2). http://www.revhabanera.sld.cu/index.php/rhab/article/view/3254/2562
Phelan, B., 2021. Semiconductor Cleanroom - Design Requirements. Advancete. https://www.advancetecllc.com/post/semiconductor-cleanroom-design-requirements
Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S.y Mishra, M., 2018. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostructure Chem;8 pp. 123–137.
Public Health England, 2020. Evaluation of the Euroimmun Anti-SARS-CoV-2 ELISA (IgG) serology assay for the detection of anti-SARS-CoV-2 antibodies. London; https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/893433/Evaluation_of_Euroimmun_SARS_CoV_2_ELISA_IgG__1_.pdf
Qiagen, 2020. QIAstat-Dx Respiratory SARS-CoV-2 Panel. https://www.qiagen.com/us/products/diagnostics-and-clinical-research/infectious-disease/qiastat-dx-syndromic-testing/qiastat-dx-eua-us/
Qiu, G., Gai, Z., Tao, Y., Schmitt, J., Kullak-Ublick, G.A, y Wang, J., 2020. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano, 14(5), pp.5268–77. https://pubs.acs.org/doi/abs/10.1021/acsnano.0c02439
Quidel, 2021. Sofia Antígeno del SARS FIA. https://www.quidel.com/immunoassays/rapid-sars-tests/sofia-sars-antigen-fia
Rafer, 2020. Cellex qSARS-CoV-2 IgG/IgM Cassette Rapid Test. https://www.rafer.es/sites/default/files/cellex_qsars-cov-2_iggigm.pdf
Roche, 2020. Elecsys ® Anti-SARS-CoV-2 Inmunoensayo para la detección cualitativa de anticuerpos (incl. IgG) contra el SARS-CoV-2. https://diagnostics.roche.com/global/en/products/params/elecsys-anti-sars-cov-2.html
Roche, 2020. SARS-CoV-2 Rapid Antigen Test Roche Diagnostic.
SD Biosensor, 2021. Standar Q COVID-19 Ag. http://www.sdbiosensor.com/product/product_view?product_no=241
Seo, G., Lee, G., Kim, M.J., Baek, S-H., Choi, M., Ku, B., et al., 2020. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano;14:5142. https://dx.doi.org/10.1021/acsnano.0c02823
Sethuraman, N., Jeremiah, S.S. y Ryo, A., 2020. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA - J Am Med Assoc; 323(22), pp.2249–51. https://pubmed.ncbi.nlm.nih.gov/32374370/
Sharpless, N., 2021. Los anticuerpos contra el coronavirus evitan la reinfección - Instituto Nacional del Cáncer. Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/noticias/temas-y-relatos-blog/2021/anticuerpos-coronavirus-protegen-contra-futuras-infecciones
Smith, A.T., LaChance, A., Zeng, S., Liu, B. y Sun, L, 2019. Synthesis, properties , and applications of graphene oxide / reduced graphene oxide and their nanocomposites. Nano Mater Sci;1(1), pp.31–47. https://doi.org/10.1016/j.nanoms.2019.02.004
Tene, T., Tubon Usca, G., Guevara, M., Molina, R., Veltri, F., Arias, M., ... & Vacacela Gomez, C., 2020. Toward large-scale production of oxidized graphene. Nanomaterials, 10(2), 279. https://www.mdpi.com/634944
Tolosa, A., 2020. Coronavirus SARS-CoV-2: estructura, mecanismo de infección y células afectadas. Genética Médica News. https://genotipia.com/genetica_medica_news/coronavirus-estructura-infeccion-celulas/
Torrente Rodríguez, R., Heather, L., Tu, J., Min, J., Yang, Y., Xu, C., et al., 2020. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter;3:1981–98. https://www.sciencedirect.com/science/article/pii/S2590238520305531
Valencia Giraldo, A., 2011. El grafeno. Rev Colomb Mater (1), pp. 24. https://revistas.udea.edu.co/index.php/materiales/article/view/9172
Vikesland, P.J., 2018. Nanosensors for water quality monitoring. Nat Nanotechnol, 13(8), pp.651–60. https://pubmed.ncbi.nlm.nih.gov/30082808/
World Health Organization, 2021. Weekly Operational Update on COVID-19. World Health Organization. https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---16-august-2021
Wu, G., Tang, X., Meyyappan, M., y Lai, K.W.C., 2015. Chemical functionalization of graphene with aromatic molecule. IEEE-NANO - 15th International Conference on Nanotechnology. Roma: Institute of Electrical and Electronics Engineers Inc.; 2015. p. 1324–7.
Young, S.L., Kellon, J.E. y Hutchison, J.E., 2016. Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to Enhance Electron Transfer and Increase Electrochemically Active Surface Area. J Am Chem Soc. 138(42), pp.13975–84. https://pubs.acs.org/doi/abs/10.1021/jacs.6b07674
Yüce, M., Filiztekin, E. y Özkaya, K.G., 2021. COVID-19 diagnosis —A review of current methods. Biosens Bioelectron, pp. 172. https://pubmed.ncbi.nlm.nih.gov/33126180/
Zhang, X., Qi, Q., Jing, Q., Ao, S., Zhang, Z., Ding, M., et al., 2020. Electrical probing of COVID-19 spike protein receptor binding domain via a graphene field-effect transistor. https://arxiv.org/abs/2003.12529
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al., 2019. A Novel Coronavirus from Patients with Pneumonia in China. N Engl J Med.;382(8), pp.727–33. https://doi.org/10.1056/NEJMoa2001017