Evaluation of ion concentration effect in low salinity water injection applied in the Oriente basin of Ecuador: reservoir simulation results

Main Article Content

Josselyn Mishell Orellana García
https://orcid.org/0000-0001-6759-7831
Karolyne Alexandra Pionce Regalado
https://orcid.org/0000-0002-2609-2308
Bolívar Germán Enríquez Vallejo
https://orcid.org/0000-0003-4750-011X
Guillermo Javier Miranda Díaz
https://orcid.org/0000-0002-9344-5230

Abstract

The purpose of this research is to analyze the effect of the ions concentration in the oil recovery when low salinity water injection (LSW) is applied in the Basal Tena sandstone, lower U sandstone, lower T sandstone and Upper Hollín sandstone, which are reservoirs of the Oriente Basin of Ecuador. LSW incidence in the oil recovery factor was contrasted with two scenarios, which were natural production and conventional water injection. The first step is to interpretate petrophysical properties of the information available from studies of cores and electrical logs of type wells of the 4 reservoirs. The next step is to define the number of layers of the simulation model based on the heterogeneity of each reservoir. On the other hand, the analysis and validation of the PVT data of each sand was carried out to verify that the samples are representative, and the values ​​of the fluid properties are consistent, then the mathematical fluid models were adjusted. Thus, we got a good fit between the experimental and theorical values. Additionally, an analysis of the rock-fluid properties was carried out where the relative permeability curves were normalized. For the construction of the dynamic models, all the previously mentioned data were incorporated. Furthermore, initial conditions and the wells for each one of the reservoirs were added. Physicochemical properties of the formation water and the injection water were included to simulate LSW technique. Finally, we built a LSW sensitivity cases, which included a variation of the ion’s concentration in the formation and injection water. LSW, conventional water injection and natural production results were comparate. The results show the oil recover factor is better with low salinity water injection. The most favorable scenario shows that the recovery factor increases approximately 6%, compared to the secondary recovery project with conventional water injection.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Orellana García, J. M., Pionce Regalado, K. A., Enríquez Vallejo, B. G., & Miranda Díaz, G. J. (2022). Evaluation of ion concentration effect in low salinity water injection applied in the Oriente basin of Ecuador: reservoir simulation results. FIGEMPA: Investigación Y Desarrollo, 14(2), 130–146. https://doi.org/10.29166/revfig.v14i2.3619
Section
Artículos
Author Biographies

Josselyn Mishell Orellana García, Universidad Central del Ecuador. Quito - Ecuador

Ingeniera de Petróleos de la Universidad Central del Ecuador.

jmorellana@uce.edu.ec Universidad Central del Ecuador. Quito, Ecuador https://orcid.org/0000-0001-6759-7831

Karolyne Alexandra Pionce Regalado, Universidad Central del Ecuador. Quito - Ecuador

Ingeniera de Petróleos

kapionce@uce.edu.ec Universidad Central del Ecuador. Quito, Ecuador https://orcid.org/0000-0002-2609-2308

Bolívar Germán Enríquez Vallejo, Universidad Central del Ecuador. Quito - Ecuador

Magíster en Sistemas de Gestión de Calidad, y Químico por la Universidad Central del Ecuador.
Actualmente se desempeña como Director de la Carrera de Petróleos de la Universidad Central del Ecuador.

bgenriquez@uce.edu.ec

https://orcid.org/0000-0003-4750-011X

Guillermo Javier Miranda Díaz, Universidad Central del Ecuador. Quito - Ecuador

Magíster en Ingeniería de Petróleos por la Universidad UTE e Ingeniero de Petróleos por la Universidad Central del Ecuador. 
Actualmente es Técnico Docente de la Carrera de Ingeniería de Petróleos de la Universidad Central del Ecuador, donde coordina el Centro de Simulación Matemática.

gjmiranda@uce.edu.ec 

https://orcid.org/0000-0002-9344-5230

References

Aldana, G., Chourio, A. & Zambrano, O. (2015). Validación estadística de datos hidrogeoquímicos provenientes del agua de producción de pozos petroleros. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 38 (3), pp. 257-265. ISSN 0254-0770. Recuperado de: http://ve.scielo.org/pdf/rtfiuz/v38n3/art09.pdf

Arcos, J. & Restrepo, L. (2020). Estudio técnico-económico para la implementación de un proyecto piloto de recuperación mejorada por inyección de agua de baja salinidad en la arena basal tena del campo palo azul. Trabajo de titulación, previo a la obtención del Título de Magíster en Ingeniería de Petróleos con Mención en Recuperación Mejorada. Instituto Superior de Investigación y Posgrado-UCE. Quito, pp. 150.

Chávez, W. & Ganán, J. (2019). Estimación del incremento del factor de recobro por inyección de agua de baja salinidad, aplicando simulación matemática, del reservorio “U” de un campo del oriente ecuatoriano. Trabajo de titulación, previo a la obtención del Título de Magíster en Ingeniería de Petróleos con Mención en Recuperación Mejorada. Instituto Superior de Investigación y Posgrado-UCE. Quito. pp. 132

Computer Modelling Group. (2017). Manual del simulador GEM. Calgary. Documento Interno.

Dang, C. (2015). Mechanistic Modeling, Design, and Optimization of Low Salinity Waterflooding (Tesis Doctoral). University of Calgary, Calgary, AB. https://doi.org/10.11575/PRISM/26869

Dang, C., Nghiem, L., Chen, Z. & Nguyen, Q. (2013). Modeling Low Salinity Waterflooding: Ion Exchange, Geochemistry and Wettability Alteration. SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA. https://doi.org/10.2118/166447-MS

Dang, C., Nghiem, L., Fedutenko, E., Gorucu, E., Yang, C. & Arash, M. (2018). Application of Artificial Intelligence for Mechanistic Modeling and Probabilistic Forecasting of Hybrid Low Salinity Chemical Flooding. SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018. https://doi.org/10.2118/191474-MS

Dang, C., Nguyen, N. & Chen, Z. (2015). Practical Concerns and Principle Guidelines for Screening, Implementation, Design, and Optimization of Low Salinity Waterflooding. SPE Western Regional Meeting, Garden Grove, California, USA, April 2015. https://doi.org/10.2118/174008-MS

Durán, S. (2019). Modelo de Simulación Matemática para la evaluación de inyección de agua de baja salinidad en la arenisca U Inferior del Campo Paka Norte, B15. Trabajo de titulación, previo a la obtención del Título de Magíster en Ingeniería de Petróleos con Mención en Recuperación Mejorada. Instituto Superior de Investigación y Posgrado-UCE. Quito. pp.181

Gorucu, S., Dang, C., Nghiem, L. & Vijay, S. (2019). Modeling and Optimization of Low Salinity Waterflood with Fines Transport. SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada, September 2019. https://doi.org/10.2118/195901-MS

Guerithault, R. & Economides, C. (2001). Single-well waterflood strategy for accelerating oil recovery. Paper SPE 71608, SPE Annual Technical Conference and Exhibition, New Orleans, LO.

Kakati, A. & Sangwai, J. (2017). Wettability alteration of mineral surface during low salinity water flooding: role of salt type, pure alkanes, and model oils containing polar components. Energy & Fuels, 32 (3), pp. 3127-3137. https://doi.org/10.1021/acs.energyfuels.7b03727.

Khanamiri, H., Enge, I., Nourani, M., Stensen, J., Torsæter, O. & Hadia, N. (2016). EOR by Low Salinity Water and Surfactant at Low Concentration: Impact of Injection and in Situ Brine Composition. Energy & Fuels, 30 (4), 2705-2713. https://doi.org/10.1021/acs.energyfuels.5b02899

Lager, A., Webb, K., Black, C., Singleton, M. & Sorbie, K. (2006). Low Salinity Oil Recovery — An Experimental Investigation. International Symposium of the Society of Core Analysts held in Trondheim, Norway 12 –16 September 2006, pp. 1 –8. https://www.scaweb.org/abstracts/880.html

Lebedeva, E., Senden, T., Knackstedt, M. & Morrow, N. (2009). Improved Oil Recovery from Tensleep Sandstone Studies of Brine -Rock Interactions by Micro -CT and AFM. Conference Proceedings, IOR 2009 - 15th European Symposium on Improved Oil Recovery, April 2009, https://doi.org/10.3997/2214-4609.201404879.

Li, Y. (2011). Oil Recovery by Low Salinity Water Injection into a Reservoir: A New Study of Tertiary Oil Recovery Mechanism. Transp Porous Med, 90, 333–362. https://doi.org/10.1007/s11242-011-9788-8

Lyons, W. (2010). Working Guide to Reservoir Engineering, pp. 1-95. Gulf Professional Publishing. https://doi.org/10.1016/B978-1-85617-824-2.00001-0.

McGuire, P., Chatham, J., Paskvan, F., Sommer, D. & Carini, F. (2005). Low Salinity Oil Recovery: An Exciting New EOR Opportunity for Alaska’s North Slope. SPE Western Regional Meeting, 30 March–1 April, Irvine, California, pp. 1– 15. https://doi.org/10.2118/93903-MS.

Nasralla, R. & Nasr-El-Din, H. (2014). Double-layer expansion: is it a primary mechanism of improved oil recovery by low-salinity waterflooding?. SPE Res Eval & Eng, 17, pp. 49–59. https://doi.org/10.2118/154334-PA

Nguyen, N., Dang, C., Nghiem, L. & Zhangxin, C. (2016). Geochemical Interpretation and Field Scale Optimization of Low Salinity Water Flooding. SPE Europec featured at 78th EAGE Conference and Exhibition, Vienna, Austria, May 2016. https://doi.org/10.2118/180107-MS

Orellana, J. y Pionce, K. (2021). Análisis de los factores físicos, químicos y geológicos que inciden en la eficacia de la inyección de agua de baja salinidad mediante simulación matemática de yacimientos. (Tesis de pregrado), Universidad Central del Ecuador, Quito-Ecuador. Recuperado de: http://www.dspace.uce.edu.ec/handle/25000/24873

Pollen, E. & Berg, C. (2018). Experimental Investigation of Osmosis as a Mechanism for Low-salinity EOR. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, UAE, 12-15 November. pp. 1–20. https://doi.org/10.2118/192753-MS.

Salehi, M., Omidvar, P. & Naeimi, F. (2017). Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure. Egypt. J. Pet, 26, pp. 301–312. https://doi.org/10.1016/j.ejpe.2016.05.003

Sandengen, K., Tweheyo, T., Raphaug, M., Kjolhamar, A., Crescente, C. & Kippe, V. (2011). Experimental evidence of low salinity water flooding yielding a more oil-wet behaviour. International Symposium of the Society of Core Analysts held in Austin, Texas, USA, 18–21 September. http://www.jgmaas.com/SCA/2011/SCA2011-16.pdf

Suleimanov, B., Latifov,Y., Veliyev, E. & Frampton, H. (2018). Comparative analysis of the EOR mechanisms by using low salinity and low hardness alkaline water. J. Pet. Sci. Eng. 162, pp. 35–43. https://doi.org/10.1016/j.petrol.2017.12.005.

Supe, E. (2020). Estudio experimental del cambio de mojabilidad producido por inyección de agua de baja salinidad en muestras de la formación hollín principal del campo Yuralpa Bloque 21. 266 p.

Tang, G. & Morrow, N. (1999). Influence of brine composition and fines migration on crude oil brine rock interactions and oil recovery. J Petrol Sci Eng, 24, pp. 99–111. https://doi.org/10.1016/S0920-4105(99)00034-0.

Vaca, A. (2015). Estimación del factor de recobro mediante la inyección de agua de baja salinidad, utilizando un modelo de simulación numérica para el análisis de oportunidad en un yacimiento de petróleo negro. Trabajo de grado presentado como requisito previo a la obtención del Título de Ingeniero de Petróleos. Carrera de Ingeniería en Petróleos-UCE. Quito. 171 p.

Xie, Q., Saeedi, A., Pooryousefy, E. & Liu, Y. (2016). Extended DLVO-based estimates of surface force in low salinity water flooding. Journal of Molecular Liquids, 221, pp. 658-665. https://doi.org/10.1016/j.molliq.2016.06.004.

Most read articles by the same author(s)