VOD, vibration, and noise behavior when doubling the drilling section in small-scale mining
Main Article Content
Abstract
The behavior of explosives was determined by comparing VOD, vibration and noise in 16 drilling and blasting tests in underground mining sections in horizontal advances of 4,84 m² compared to sections of 10,25 m², the type of rock characterized is resistant rock R4 to very resistant R5, located in the Zaruma-Malvas mining sector. Conventional ignition methods were used in tests No. 01 to 12 and assembled method in tests No. 13 to 16, where 4 combinations of explosives were identified between ANFO, Emulsions (6 "and 7" inches) and Agricultural Ammonium Nitrate as part of bait, bottom charge and column charge. A comparative analysis was carried out between the explosive initiation systems between conventional and assembled, revealing differences in blasting performance depending on the size of the section. In small sections (4,84 m²), the assembled system reduces vibration by 24,58% and noise by 3,93%, but decreases the velocity of detonation (VOD) by 2,53%. In large sections (10,25 m²), this system achieves a vibration reduction (47,11%), but increases noise (4,31%) and marginally increases VOD (0,04%). On the other hand, the conventional system demonstrates greater stability, improving VOD (+1,71%) and better controlling vibrations (−5,37%) in large sections, making it suitable for sensitive environments. Regarding the loading pattern, ANFO excels in small sections, reducing vibrations (92,9%) and noise (88,59%) compared to emulsions, although its effectiveness varies depending on the combination. However, when the section is doubled (10,25 m²), the assembled system shows an increase in vibrations (+55,13%) and noise (+4,47%), limiting its applicability. These results suggest that, while the assembled system can optimize fragmentation in large blasting operations, the conventional system offers a superior balance between performance and environmental impact control, especially in areas with vibration and noise restrictions.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Adeoluwa Olajesu, O., Noa Monjes, R. y Quevedo Sotolongo, G. (2017) “Caracterización estructural del macizo rocoso de la mina subterránea Oro Descanso”, Minería & Geología, 33(4), pp. 464-476. Disponible en: http://scielo.sld.cu/pdf/mg/v33n4/mg07417.pdf
Akbay, D. y Erkincioglu, G. (2023) “Suggesting conversion factor coefficients for estimating different types of schmidt hammer rebound hardness values”. Journal of Engineering Sciences and Design, 11(2), pp. 719-728. DOI: 10.21923/jesd.1177233
ARCCENER (2020) Reglamento de Seguridad y Salud en el Trabajo en al Ámbito Minero. Quito: Directorio de la Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables. Disponible en: https://www.ambienteyenergia.gob.ec/wp-content/uploads/2020/10/4.-Resoluci%C3%B3n-Nro.-ARCERNNR-013-2020-signed-signed.pdf
Biagetti S, Alcaina-Mateos J, Ruiz-Giralt A, Lancelotti C, Groenewald P, et al. (2022) “Correction: Identifying anthropogenic features at Seoke (Botswana) using pXRF: Expanding the record of southern African Stone Walled Sites”, PLOS ONE, 17(5). DOI: 10.1371/journal.pone.0250776
Bieniawski, Z. T. (1989) Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. USA: John Wiley & Sons. Disponible en: https://iem.ca/pdf/resources/Engineering%20Rock%20Mass%20Classifications_%20A%20Complete%20Manual%20for%20Engineers%20and%20Geologists%20in%20Mining,%20Civil,%20and%20Petroleum%20Engineering.pdf
Burbano Morillo, D. S., Rivadeneira Gallardo, A. M., Cerón Uquillas, A. A. y García Fonseca, T. E. (2021) “Análisis tenso-deformacional de las obras de remediación implementadas para estabilizar la subsidencia minera bajo la Escuela La Inmaculada, Zaruma-Ecuador”, Figempa Investigación y Desarrollo, 12(2), pp. 1-14. DOI: 10.29166/revfig.v12i2.3054
Cardu, M., Godio, A., Oggeri, C. y Seccatore, J. (2022) “The influence of rock mass fracturing on splitting and contour blasts”, Geomechanics and Geoengineering, 17(3), pp. 822–833. DOI: 10.1080/17486025.2021.1890234
Cardu, M. y Seccatore, J. (2016) “Quantifying the difficulty of tunnelling by drilling and blasting”, Tunnelling and underground space technology, 60, pp. 178-182. DOI: 10.1016/j.tust.2016.08.010
Carrión Mero, P. et al. (2019) “Geomechanical Characterization and analysis of the effects of rock massif in Zaruma city, Ecuador”, Proceedings of the 17th LACCEI International Multi-Conference for Engineering, Education and Technology. Montego Bay, 24-26 julio 2019. DOI: 10.18687/LACCEI2019.1.1.362
Correa Arroyave, Á. y Rueda Fonseca, J. E. (2023) “RMR y tipo de explosivo: incidencia en las voladuras subterráneas”, BISTURA, 19(1), pp. 41-50. DOI: 10.24054/bistua.v19i1.959
Couceiro, P. y López Cano, M. (2018) “La Voladura como Estrategia de Optimización - Un Método Simplificado”, XIV Congreso Internacional de Energía y Recursos Minerales. Sevilla, 10- 13 abril 2018. España. Disponible en: https://www.researchgate.net/publication/329896878_La_Voladura_como_Estrategia_de_Optimizacion_-_Un_Metodo_Simplificado
EXPLOCEN C.A. (2022) Ficha Técnica: Emulsiones 5000X / ANFO / Estopin / Mecha lenta / Fulminante Nro. 8 / Cordón detonante. Disponible en: https://www.explocen.com.ec/ [Consultado 20-01-2023].
EXSA S.A. (2020) Manual Practico de Voladura. 5ª ed. Perú: EXSA. Disponible en: https://online.fliphtml5.com/hqjn/rypz/#p=1
Gamarra Castro, L. C. y Romero Vásquez, M. C. (2024) “Pérdida auditiva en personal de trabajo en empresas contratistas de mineras peruanas. Años 2018 y 2019”, Revista cubana de salud y trabajo, 25(2) . Disponible en: http://scielo.sld.cu/pdf/rcst/v25n2/1991-9395-rcst-25-02-e405.pdf
Hossain Khan, M. et al. (2025) “Ground vibration effect evaluation due to blasting operations”, Heliyon, 11(2). DOI: 10.1016/j.heliyon.2025.e41759
Mejía Flores, M. A., Cuesta, G. y Cabrera Barrera, K. F. (2021) “Evaluación de las metodologías holmberg y konya en la mina grumintor de una malla de perforación y voladura”, Conciencia Digital, 4(3.1), pp. 207-226. DOI: 10.33262/concienciadigital.v4i3.1.1824
Monsalve, J. E., Cardona Arbeláez, G., Monsalve, J. J. y Georghe, G. C. (2020) Decálogo para la Prevención de Accidentes por Causas Geomecánicas en Excavaciones Mineras. Colombia: Asociación de Profesionales del Sector Minero de Colombia, Facultad de Minas de la Universidad Nacional de Colombia y Agencia Nacional de Minería. Disponible en: https://www.researchgate.net/publication/349942966_Decalogo_para_la_Prevencion_de_Accidentes_por_Causas_Geomecanicas_en_Excavaciones_Mineras
Muñoz Beroiza, M. J. (2019) Avance y Desarrllo de Galerías. Tesis de pregrado. Universidad Andres Bello. Disponible en: https://repositorio.unab.cl/server/api/core/bitstreams/6e19d373-bd1b-44e6-b63e-b7ce90dedc2e/content#page=54yzoom=100,109,94
Ordoñez Guaycha, C. A., Carranco López, J. A., Bustos Pulluquitin, S. P. y Toalombo Vargas, V. M. (2023) “Estudio sobre la afectación del ruido en la minería, una revisión sistemática de las principales afectaciones que presenta para la salud de los trabajadores”, Tesla, 3(2), DOI: 10.55204/trc.v3i2.e251
Pinto Morales, L. H. y Fuentes Fuentes, M. C. (2022) “Vibraciones generadas por voladuras en obras subterráneas. Casos de estudio en Colombia”, Minería y Geología, 38(4), pp. 316-330. Disponible en: https://www.redalyc.org/journal/2235/223578232002/html/
Poma, M., Quispe, G., Mamani-Macedo, N., Zapata, G., Raymundo-Ibañez, C., Dominguez, F. (2020). “Drilling-and-Blasting Mesh Design for Underground Mining Using the Holmberg Method”. En: Ahram, T., Taiar, R., Gremeaux-Bader, V., Aminian, K. (eds). Human Interaction, Emerging Technologies and Future Applications II. IHIET 2020. Cham: Springer. DOI: 10.1007/978-3-030-44267-5_103
Seccatore, J., Gonzalez, P. y Herrera, M. (2020) “Peculiarities of drilling and blasting in underground small-scale mines”. Revista Internacional de Ingeniería, 73(3), pp. 387-394. DOI: 10.1590/0370-44672019730167
Silva, J., Worsey, T. y Lusk, B. (2019) “Practical assessment of rock damage due to blasting”, International Journal of Mining Science and Technology, 29(3), pp. 379-385. DOI: 10.1016/j.ijmst.2018.11.003
Widodo, S., Anwar, H. y Syafitri, N. A. (2019) “Comparative analysis of ANFO and emulsion application on overbreak and underbreak at blasting development activity in underground Deep Mill Level Zone (DMLZ) PT Freeport Indonesia”, The International Conference on Geoscience. Makassar, 1-2 noviembre 2018. Indonesia: IOP. DOI: 10.1088/1755-1315/279/1/012001
Zavala Serrano, C. J. (2014) Diseño de excavación de la galería principal de acceso a la mina "Reina del Cisne". Trabajo de Grado. Universidad Central del Ecuador. Disponible en: https://www.dspace.uce.edu.ec/entities/publication/adb24714-82e0-45f4-b6d4-464c5645a14f
Zúñiga Arrobo, C. A. y Rojas Villacís, C. A. (2020) “Análisis de costos operativos en pequeña minería y minería ratesanal en Nambija”, FIGEMPA: Investigación y Desarrollo, 10(2), pp. 50-60. DOI: 10.29166/revfig.v1i2.2568
Zúñiga Arrobo, C. A. et al. (2024) “Velocidad de detonación del explosivo, vibración y ruido en pequeña minería subterránea, Zaruma – Ecuador”. FIGEMPA: Investigación y Desarrollo, 17(1). Disponible en: https://revistadigital.uce.edu.ec/index.php/RevFIG/article/view/4634/7383