Study of the accuracy of direct and indirect methods for measuring density on site
Main Article Content
Abstract
The accurate determination of compacted soil density is essential to ensure the quality and stability of infrastructure works, especially in civil engineering projects where quality control is crucial. In this context, this research project was developed to evaluate the accuracy of direct and indirect methods for measuring the density of different types of soil in situ, using laboratory test benches. The main objective was to compare the accuracy of direct methods (sand cone, density, and unit weight) and indirect methods (nuclear densimeter and electrical densimeter) to determine parameters such as degree of compaction, moisture content, wet density, and dry density of compacted soils. To this end, soil samples were extracted and characterized and classified according to the Unified Soil Classification System (USCS) through granulometry, consistency limits, and plasticity index tests, verifying that they met the required properties. The methodology included the creation of test banks using the standard Proctor test and the application of selected methods to measure density in sands, silts, and clays. The results were statistically analyzed using standard deviation, coefficient of variation, normality analysis, and analysis of variance (ANOVA), supplemented with comparative tables and graphs. It was determined that direct methods were more accurate under controlled conditions, while indirect methods were more effective in terms of speed and ease of application. The conclusions allowed the advantages and limitations of each methodology to be identified, contributing to the selection of the most appropriate techniques for different applications in the field of engineering. This study contributed to the choice of more reliable methodologies for quality control in the construction of embankments or the compaction of structural layers of roads, optimizing processes and ensuring greater structural safety.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
ASTM International (2016) ASTM D1556: Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d1556_d1556m-15e01.html
ASTM International (2017) ASTM D2922: Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth). Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d2922-05.html
ASTM International (2018) ASTM D4318: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d4318-17e01.html
ASTM International (2019) ASTM D2216: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d2216-19.html
ASTM International (2020) ASTM D2487: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d2487-17e01.html
ASTM International (2021a) ASTM D698: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d0698-12r21.html
ASTM International (2021b) ASTM D6913: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d6913_d6913m-17.html
ASTM International (2021c) ASTM D7263: Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d7263-21.html
ASTM International (2021d) ASTM D7928: Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d7928-21e01.html
ASTM International (2023a) ASTM D854: Standard Test Methods for Specific Gravity of Soil Solids by the Water Displacement Method. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d0854-23.html
ASTM International (2023b) ASTM D4220: Standard Practices for Preserving and Transporting Soil Samples. Advancing Standards Transforming Markets. Disponible en: https://www.astm.org/d4220_d4220m-14.html
Caiza, B. y Racines, J. (2025) Evaluación de la precisión en la medición de la densidad de arena, limo y arcilla aplicando métodos directos e indirectos en bancos de prueba en laboratorio. Trabajo de grado. Universidad Central del Ecuador. Disponible en: https://www.dspace.uce.edu.ec/handle/25000/37523
Castillo Gutiérrez, S. y Lozano Aguilera, E.D. (2007) “Q-Q Plot Normal. Los puntos de posición gráfica”, Revista electrónica Universidad de Jaén, 2(9). Disponible en: https://revistaselectronicas.ujaen.es/index.php/ininv/article/viewFile/259/241
Crawley, M.J. (2013) The R Book. 2da ed. West Sussex: John Wiley & Sons Inc. Disponible en: https://livresbioapp.wordpress.com/wp-content/uploads/2015/07/crawley-the_r_book.pdf
CTEC (2014) Uso y aplicación del densímetro no nuclear SDG-200 para el control receptivo en terreno de bases granulares y sub bases mediante impedancia eléctrica. Panamá. Disponible en: https://ctecpanama.com/wp-content/uploads/2021/01/Presentacion-SDG-200-06-08-14.pdf
Das, B.M. y Sobhan, K. (2018) Principles of Geotechnical Engineering. 9th ed. Cengage Learning. Disponible en: https://aportesingecivil.com/principles-of-geotechnical-engineering-9th-edition-braja-m-das/
Flores, J. (2014) Validación de la determinación de la densidad in-situ, de un tramo del proyecto “Collas-Tababela”, utilizando un densímetro eléctrico y comparando los resultados con el densímetro nuclear y el cono y arena. Tesis de grado. Pontificia Universidad Católica del Ecuador. Disponible en: https://repositorio.puce.edu.ec/items/db7db57b-0030-4958-9c1b-f5c397aa715c
Gabriels, D. y Lobo, D. (2013) Métodos para determinar granulometría y densidad aparente del suelo. Universidad Central de Venezuela. Disponible en: https://repositorioslatinoamericanos.uchile.cl/handle/2250/4938481
Gutiérrez Rodríguez, W.Á. (2023) “Ensayo granulométrico de los suelos mediante el método del tamizado”, Ciencia Latina Revista Científica Multidisciplinar, 7(2), pp. 6908-6927. DOI: 10.37811/cl_rcm.v7i2.5834 DOI: https://doi.org/10.37811/cl_rcm.v7i2.5834
Knappett, J.A. y Craig, R.F. (2012) Craig’s Soil Mechanics. 8a ed. Londres: E & FN Spon. DOI: 10.1201/b12841 DOI: https://doi.org/10.1201/b12841
Ministerio de Obras Públicas y Comunicaciones (2002) Especificaciones generales para la construcción de caminos y puentes. Quito: MOP. Disponible en: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2021/01/MPR_Chimborazo_Cumanda_Especificaciones-Tecnicas-MOP-001-F-2002.pdf
Posada, G. (2016) Elementos básicos de estadística descriptiva para el análisis de datos. Medellín: Fundación Universitaria Luis Amigó. Disponible en: https://www.funlam.edu.co/uploads/fondoeditorial/120_Ebook-elementos_basicos.pdf
Romero Saldaña, M. (2016) “Pruebas de bondad de ajuste a una distribución normal”, Revista Enfermería del Trabajo, 6(3), pp. 105- 114. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5633043
Vicéns, J., Herrarte, A. y Medina, E. (2005) Análisis de la Varianza (ANOVA). Universidad Autónoma de Madrid Disponible en: https://gc.scalahed.com/recursos/files/r161r/w25298w/M1CDN114_S5_Analisis_de_la_varianza.pdf
Yepes, V. (2019) Control de calidad de la compactación de un suelo. Universidad Politécnica de Valencia. Disponible en: https://victoryepes.blogs.upv.es/2019/03/08/control-de-calidad-de-la-compactacion-de-un-suelo/