Escasez de recursos minerales: consecuencias en la explotación, la sostenibilidad y el desarrollo tecnológico

Contenido principal del artículo

María José Castillo-Pérez
https://orcid.org/0009-0008-0196-1571
Catherine Huerta-Velásquez
https://orcid.org/0000-0001-9511-3451
Fernanda Rivas-Lorca
Eduardo Rojas-Uzcátegui
Alexander Lescot-Soto
https://orcid.org/0009-0004-3163-9904
Claudio Argandoña-Reyes
https://orcid.org/0009-0002-1704-3691
Katherine Araya-Carvajal
https://orcid.org/0009-0001-9406-3082

Resumen

El incremento de la población mundial y la demanda de tecnologías han aumentado de manera exponencial el consumo de recursos minerales, poniendo en riesgo su disponibilidad para las generaciones futuras. El presente estudio tiene como objetivo conocer el estado de la producción académica sobre la escasez de recursos y evaluar sus consecuencias en la explotación, la sostenibilidad y el desarrollo tecnológico. Se llevó a cabo una revisión bibliográfica sistematizada usando las bases de datos Scopus, WoS y SciELO. Se analizaron 57 documentos que abordan temáticas como el impacto ambiental de la extracción, estrategias de reutilización, evaluaciones de criticidad y políticas de regulación de la actividad minera. Se concluye que los principales factores de la escasez de recursos están relacionados con la falta de normativa, la creciente demanda de nuevas tecnologías y discrepancia en los métodos de estimación de criticidad. Se advierte la necesidad de buscar alternativas de extracción y fomentar estrategias de recuperación de materiales.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Castillo-Pérez, M. J., Huerta-Velásquez, C., Rivas-Lorca, F., Rojas-Uzcátegui, E., Lescot-Soto, A., Argandoña-Reyes, C., & Araya-Carvajal, K. (2024). Escasez de recursos minerales: consecuencias en la explotación, la sostenibilidad y el desarrollo tecnológico. FIGEMPA: Investigación Y Desarrollo, 17(1), 112–123. https://doi.org/10.29166/revfig.v17i1.5811
Sección
Artículos
Biografía del autor/a

María José Castillo-Pérez, Instituto Profesional IACC. Santiago, Chile

Ingeniero Geólogo con experiencia en el área de geología de campo, geotecnia, minería, mineralogía, análisis de macizos rocosos, estabilidad de taludes, descripción de facies sedimentarias y docencia online en educación superior. Con estudios en técnicas de planificación y control de gestión.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Catherine Huerta-Velásquez, Instituto Profesional IACC. Santiago, Chile

Geóloga, Ms. (C) en Gestión Ambiental, con experiencia en el desarrollo de proyectos mineros y docencia.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Fernanda Rivas-Lorca, Instituto Profesional IACC. Santiago, Chile

Ingeniero Civil de Minas con amplios conocimientos en gestión y desarrollo de proyectos, a cargo de iniciativas Innovadoras y disruptivas en áreas de energías renovables, minería y construcción. Con enfoque a la mejora continua y excelencia operacional de los procesos productivos. Experiencia en Docencia Superior en áreas de; administración de operaciones, planificación, estimación de recursos mineros, geología, equipos mineros, perforación y tronadura.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile.

Eduardo Rojas-Uzcátegui, Instituto Profesional IACC. Santiago, Chile

Ingeniero geólogo con estudios en minería, aplicados a la exploración y estimación de recursos minerales, hídricos e hidrocarburos, experiencia en planificación y control de procesos formativos, capacitaciones y funcionalidad. Experiencia en docencia de nivel superior en geología, geomecánica y procesos mineros.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Alexander Lescot-Soto, Instituto Profesional IACC. Santiago, Chile

Ingeniero en Minas, Ingeniero Industrial (c), con experiencia en desarrollo, planificación y gestión de proyectos mineros metálicos y no metálicos; programación de mantenimiento de equipos móviles, y en docencia de educación superior.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Claudio Argandoña-Reyes, Instituto Profesional IACC. Santiago, Chile

Ingeniero Civil de Minas con experiencia principalmente en el área de geociencias, estimación y evaluación de yacimientos mineros, proyectos tecnológicos de grandes mineras y administración de contratos.

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Katherine Araya-Carvajal, Instituto Profesional IACC. Santiago, Chile

Instituto Profesional IACC. Escuela de Procesos Industriales. Providencia, Región Metropolitana, Chile

Citas

André, H. & Ljunggren, M. (2021) Towards comprehensive assessment of mineral resource availability? Complementary roles of life cycle, life cycle sustainability and criticality assessments. Resources, Conservation and Recycling, 167. doi: 10.1016/j.resconrec.2021.105396. DOI: https://doi.org/10.1016/j.resconrec.2021.105396

Babbitt, C.W., Althaf, S., Cruz Rios, F., Bilec, M.M. & Graedel, T.E. (2021) The role of design in circular economy solutions for critical materials. One Earth, 4 (3), pp. 353–362. doi: 10.1016/J.ONEEAR.2021.02.014. DOI: https://doi.org/10.1016/j.oneear.2021.02.014

Bach, V., Finogenova, N., Berger, M., Winter, L. & Finkbeiner, M. (2017) Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany. Resources Policy, 53, pp. 283–299. doi: 10.1016/j.resourpol.2017.07.003. DOI: https://doi.org/10.1016/j.resourpol.2017.07.003

Botelho Junior, A.B., Stopic, S., Friedrich, B., Tenório, J.A.S. & Espinosa, D.C.R. (2021) Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals, 11 (12), p. 1999. doi: 10.3390/met11121999. DOI: https://doi.org/10.3390/met11121999

Brewer, A., Florek, J. & Kleitz, F. (2022) A perspective on developing solid-phase extraction technologies for industrial-scale critical materials recovery. Green Chemistry, 24 (7), pp. 2752–2765. doi: 10.1039/D2GC00347C. DOI: https://doi.org/10.1039/D2GC00347C

Can Sener, S.E., Thomas, V.M., Hogan, D.E., Maier, R.M., Carbajales-Dale, M., Barton, M.D., Karanfil, T., Crittenden, J.C. & Amy, G.L. (2021) Recovery of Critical Metals from Aqueous Sources. ACS Sustainable Chemistry & Engineering, 9 (35), pp. 11616–11634. doi: 10.1021/acssuschemeng.1c03005. DOI: https://doi.org/10.1021/acssuschemeng.1c03005

Castillo, E. & Eggert, R. (2020) Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources. Resources, Conservation and Recycling, 161. doi: 10.1016/j.resconrec.2020.104896. DOI: https://doi.org/10.1016/j.resconrec.2020.104896

Charpentier Poncelet, A., Helbig, C., Loubet, P., Beylot, A., Muller, S., Villeneuve, J., Laratte, B., Thorenz, A., Tuma, A. & Sonnemann, G. (2022) Losses and lifetimes of metals in the economy. Nature Sustainability, 5 (8), pp. 717–726. doi: 10.1038/s41893-022-00895-8. DOI: https://doi.org/10.1038/s41893-022-00895-8

Christmann, P. & Lefebvre, G. (2022) Trends in global mineral and metal criticality: the need for technological foresight. Mineral Economics, 35 (3–4), pp. 641–652. doi: 10.1007/s13563-022-00323-5. DOI: https://doi.org/10.1007/s13563-022-00323-5

Cisternas, L.A., Ordóñez, J.I., Jeldres, R.I. & Serna-Guerrero, R. (2022) Toward the Implementation of Circular Economy Strategies: An Overview of the Current Situation in Mineral Processing. Mineral Processing and Extractive Metallurgy Review, 43 (6), pp. 775–797. doi: 10.1080/08827508.2021.1946690. DOI: https://doi.org/10.1080/08827508.2021.1946690

Codina, L. (2018) Revisiones bibliográficas sistematizadas: Procedimientos generales y Framework para Ciencias Humanas y Sociales. Departamento de Comunicación. Universitat Pompeu Fabra.

Dutaut, R.V. & Marcotte, D. (2021) A new grade-capping approach based on coarse duplicate data correlation. Journal of the Southern African Institute of Mining and Metallurgy, 121 (5), pp. 193–200. doi: 10.17159/2411-9717/1379/2021. DOI: https://doi.org/10.17159/2411-9717/1379/2021

Eheliyagoda, D., Zeng, X., Wang, Z., Albalghiti, E. & Li, J. (2019) Forecasting the temporal stock generation and recycling potential of metals towards a sustainable future: The case of gallium in China. Science of The Total Environment, 689, pp. 332–340. doi: 10.1016/j.scitotenv.2019.06.413. DOI: https://doi.org/10.1016/j.scitotenv.2019.06.413

Gaustad, G., Krystofik, M., Bustamante, M. & Badami, K. (2018) Circular economy strategies for mitigating critical material supply issues. Resources, Conservation and Recycling, 135, pp. 24–33. doi: 10.1016/j.resconrec.2017.08.002. DOI: https://doi.org/10.1016/j.resconrec.2017.08.002

Geipel, J. (2017) Local procurement in mining: A central component of tackling the resource curse. The Extractive Industries and Society, 4 (3), pp. 434–438. doi: 10.1016/j.exis.2017.07.001. DOI: https://doi.org/10.1016/j.exis.2017.07.001

Gomes Correia, A., Winter, M.G. & Puppala, A.J. (2016) A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, pp. 21–28. doi: 10.1016/j.trgeo.2016.03.003. DOI: https://doi.org/10.1016/j.trgeo.2016.03.003

Grant, M.J. & Booth, A. (2009) A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26 (2), pp. 91–108. doi: 10.1111/j.1471-1842.2009.00848.x. DOI: https://doi.org/10.1111/j.1471-1842.2009.00848.x

Hariyani, D. & Mishra, S. (2022) Drivers for the adoption of integrated sustainable green lean six sigma agile manufacturing system (ISGLSAMS) and research directions. Cleaner Engineering and Technology, 7. doi: 10.1016/j.clet.2022.100449. DOI: https://doi.org/10.1016/j.clet.2022.100449

Heffron, R.J. (2020) The role of justice in developing critical minerals. The Extractive Industries and Society, 7 (3), pp. 855–863. doi: 10.1016/J.EXIS.2020.06.018. DOI: https://doi.org/10.1016/j.exis.2020.06.018

Henckens, M.L.C.M., van Ierland, E.C., Driessen, P.P.J. & Worrell, E. (2016) Mineral resources: Geological scarcity, market price trends, and future generations. Resources Policy, 49, pp. 102–111. doi: 10.1016/j.resourpol.2016.04.012. DOI: https://doi.org/10.1016/j.resourpol.2016.04.012

Henckens, T. (2021a) Governance of the World’s Mineral Resources. Elsevier. doi: 10.1016/C2020-0-01047-9. DOI: https://doi.org/10.1016/B978-0-12-823886-8.00027-0

Henckens, T. (2021b) Scarce mineral resources: Extraction, consumption and limits of sustainability. Resources, Conservation and Recycling, 169. doi: 10.1016/j.resconrec.2021.105511. DOI: https://doi.org/10.1016/j.resconrec.2021.105511

Hofmann, M., Hofmann, H., Hagelüken, C. & Hool, A. (2018) Critical raw materials: A perspective from the materials science community. Sustainable Materials and Technologies, 17. doi: 10.1016/j.susmat.2018.e00074. DOI: https://doi.org/10.1016/j.susmat.2018.e00074

Hosseini, S.A., Asghari, O. & Emery, X. (2017) Direct block-support simulation of grades in multi-element deposits: application to recoverable mineral resource estimation at Sungun porphyry copper-molybdenum deposit. Journal of the Southern African Institute of Mining and Metallurgy, 117 (6), pp. 577–585. doi: 10.17159/2411-9717/2017/v117n6a8. DOI: https://doi.org/10.17159/2411-9717/2017/v117n6a8

Ioannidou, D., Heeren, N., Sonnemann, G. & Habert, G. (2019) The future in and of criticality assessments. Journal of Industrial Ecology, 23 (4), pp. 751–766. doi: 10.1111/jiec.12834. DOI: https://doi.org/10.1111/jiec.12834

Karali, N. & Shah, N. (2022) Bolstering supplies of critical raw materials for low-carbon technologies through circular economy strategies. Energy Research & Social Science, 88. doi: 10.1016/j.erss.2022.102534. DOI: https://doi.org/10.1016/j.erss.2022.102534

Khubana, T., Rootman, C. & Smith, E.E. (2022) Antecedents of Shared Value: Perceptions within the South African mining industry. Journal of Contemporary Management, 19 (1), pp. 132–167. doi: 10.35683/jcm21041.141. DOI: https://doi.org/10.35683/jcm21041.141

Lapcik, V., Kohut, O., Novak, P. & Kalocajova, A. (2018) Environmental Impacts Of Mining Of Mineral Resources. Inzynieria Mineralna-Journal of the Polish Mineral Engineering Society, (2), pp. 253–263.

Lee, J., Bazilian, M., Sovacool, B. & Greene, S. (2020) Responsible or reckless? A critical review of the environmental and climate assessments of mineral supply chains. Environmental Research Letters, 15 (10). doi: 10.1088/1748-9326/ab9f8c. DOI: https://doi.org/10.1088/1748-9326/ab9f8c

Lewicka, E., Guzik, K. & Galos, K. (2021) On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources. Resources, 10 (5), p. 50. doi: 10.3390/resources10050050. DOI: https://doi.org/10.3390/resources10050050

Li, Y., Zhong, Q., Wang, Y., Jetashree, Wang, H., Li, H. & Liang, S. (2022) Scarcity-weighted metal extraction enabled by primary suppliers through global supply chains. Journal of Cleaner Production, 371, 133435. doi: 10.1016/j.jclepro.2022.133435. DOI: https://doi.org/10.1016/j.jclepro.2022.133435

Mateus, A. & Martins, L. (2019) Challenges and opportunities for a successful mining industry in the future. Boletín Geológico y Minero, 130 (1), pp. 99–121. doi: 10.21701/bolgeomin.130.1.007. DOI: https://doi.org/10.21701/bolgeomin.130.1.007

Moomen, A.W., Jensen, D., Lacroix, P. & Bertolotto, M. (2019) Assessing the policy adoption and impact of geoinformation for enhancing sustainable mining in Africa. Journal of Cleaner Production, 241. doi: 10.1016/j.jclepro.2019.118361. DOI: https://doi.org/10.1016/j.jclepro.2019.118361

Mudd, G.M., Jowitt, S.M. & Werner, T.T. (2018) Global platinum group element resources, reserves and mining – A critical assessment. Science of The Total Environment, 622–623, pp. 614–625. doi: 10.1016/j.scitotenv.2017.11.350. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.350

Nam, S.Y., Thriveni, T. & Whan, A.J. (2017) Climate change mitigation and sustainability: Global trend of critical rare earth elements recovery from waste sources. In: 14th International Symposium on East Asian Resources Recycling Technology, EARTH2017. 26 September, Sapporo, The Mining and Material Processing Institute of Japan.

Nassani, A.A., Aldakhil, A.M. & Zaman, K. (2021) Ecological footprints jeopardy for mineral resource extraction: Efficient use of energy, financial development and insurance services to conserve natural resources. Resources Policy, 74, 102271. doi: 10.1016/J.RESOURPOL.2021.102271. DOI: https://doi.org/10.1016/j.resourpol.2021.102271

Nickless, E. & Yakovleva, N. (2022) Resourcing Future Generations Requires a New Approach to Material Stewardship. Resources, 11 (8), p. 78. doi: 10.3390/resources11080078. DOI: https://doi.org/10.3390/resources11080078

Orynbassar, D. & Madani, N. (2021) Mineral resource modelling using an unequal sampling pattern: An improved practice based on factorization techniques. Journal of the Southern African Institute of Mining and Metallurgy, 121 (8), pp. 1–11. doi: 10.17159/2411-9717/1332/2021. DOI: https://doi.org/10.17159/2411-9717/1332/2021

Palacios, J.L., Calvo, G., Valero, A. & Valero, A. (2018) The cost of mineral depletion in Latin America: An exergoecology view. Resources Policy, 59, pp. 117–124. doi: 10.1016/j.resourpol.2018.06.007. DOI: https://doi.org/10.1016/j.resourpol.2018.06.007

Pietrzak, M.B. & Balcerzak, A.P. (2021) Selection of the set of areal units for economic regional research on the land use: a proposal for Aggregation Problem solution. Acta Montanistica Slovaca, 26 (2), pp. 222–234. doi: 10.46544/AMS.v26i2.04. DOI: https://doi.org/10.46544/AMS.v26i2.04

Ponomarenko, T., Nevskaya, M. & Jonek-Kowalska, I. (2021) Mineral Resource Depletion Assessment: Alternatives, Problems, Results. Sustainability, 13 (2), p. 862. doi: 10.3390/su13020862. DOI: https://doi.org/10.3390/su13020862

Prior, T., Giurco, D., Mudd, G., Mason, L. & Behrisch, J. (2012) Resource depletion, peak minerals and the implications for sustainable resource management. Global Environmental Change, 22 (3), pp. 577–587. doi: 10.1016/j.gloenvcha.2011.08.009. DOI: https://doi.org/10.1016/j.gloenvcha.2011.08.009

Reis, C., Arroyo, C., Curi, A. & Zangrandi, M. (2021) Impact of bulk density estimation in mine planning. Mining Technology, 130 (1), pp. 60–65. doi: 10.1080/25726668.2021.1876481. DOI: https://doi.org/10.1080/25726668.2021.1876481

Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.Ch., Khairutdinov, A.M., Tyulyaeva, Yu.S. & Makarov, P.S. (2021) Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company. Metallurgist, 64 (9–10), pp. 851–861. doi: 10.1007/s11015-021-01065-5. DOI: https://doi.org/10.1007/s11015-021-01065-5

Sarker, S.K., Haque, N., Bhuiyan, M., Bruckard, W. & Pramanik, B.K. (2022) Recovery of strategically important critical minerals from mine tailings. Journal of Environmental Chemical Engineering, 10 (3). doi: 10.1016/j.jece.2022.107622. DOI: https://doi.org/10.1016/j.jece.2022.107622

Sauer, P.C. & Seuring, S. (2017) Sustainable supply chain management for minerals. Journal of Cleaner Production, 151, pp. 235–249. doi: 10.1016/j.jclepro.2017.03.049. DOI: https://doi.org/10.1016/j.jclepro.2017.03.049

Schellens, M.K. & Gisladottir, J. (2018) Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition. Resources, 7 (4), p. 79. doi: 10.3390/resources7040079. DOI: https://doi.org/10.3390/resources7040079

Schodde, R. (2018) Where, what, when and who? Highlighting key global exploration opportunities, trends and a perspective on the cycle of mineral exploration. In: International Mining and Resources (IMARC) Conference. October 2018 Melbourne, Victoria. p.

Schrijvers, D., Hool, A., Blengini, G.A., Chen, W.-Q., Dewulf, J., et al. (2020) A review of methods and data to determine raw material criticality. Resources, Conservation and Recycling, 155. doi: 10.1016/j.resconrec.2019.104617. DOI: https://doi.org/10.1016/j.resconrec.2019.104617

Sebutsoe, T.C. & Musingwini, C. (2017) Characterizing a mining production system for decision-making purposes in a platinum mine. Journal of the Southern African Institute of Mining and Metallurgy, 117 (2), pp. 199–206. doi: 10.17159/2411-9717/2017/v117n2a11. DOI: https://doi.org/10.17159/2411-9717/2017/v117n2a11

Seck, G.S., Hache, E., Bonnet, C., Simoën, M. & Carcanague, S. (2020) Copper at the crossroads: Assessment of the interactions between low-carbon energy transition and supply limitations. Resources, Conservation and Recycling, 163, 105072. doi: 10.1016/J.RESCONREC.2020.105072. DOI: https://doi.org/10.1016/j.resconrec.2020.105072

Servicio Geológico de Estados Unidos (2018) Final List of Critical Minerals 2018. https://www.govinfo.gov/content/pkg/FR-2018-05-18/pdf/2018-10667.pdf

Theler, B., Kauwe, S.K. & Sparks, T.D. (2020) Materials Abundance, Price, and Availability Data from the Years 1998 to 2015. Integrating Materials and Manufacturing Innovation, 9 (1), pp. 144–150. doi: 10.1007/s40192-020-00173-5. DOI: https://doi.org/10.1007/s40192-020-00173-5

Tilton, J.E. (2003) Assessing the Threat of Mineral Depletion. Minerals & Energy - Raw Materials Report, 18 (1), pp. 33–42. doi: 10.1080/14041040310008383. DOI: https://doi.org/10.1080/14041040310008383

Trubetskoi, K.N., Zakharov, V.N. & Galchenko, Yu.P. (2020) Naturelike and Convergent Technologies for Developing Lithosphere Mineral Resources. Herald of the Russian Academy of Sciences, 90 (3), pp. 332–337. doi: 10.1134/S1019331620030065. DOI: https://doi.org/10.1134/S1019331620030065

Tunsu, C., Menard, Y., Eriksen, D.O., Ekberg, C. & Petranikova, M. (2019) Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, pp. 425–437. doi: 10.1016/j.jclepro.2019.01.312. DOI: https://doi.org/10.1016/j.jclepro.2019.01.312

Wang, Y., Chen, H., Long, R., Liu, B., Jiang, S., Yang, X. & Yang, M. (2021) Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework. Resources Policy, 71. doi: 10.1016/j.resourpol.2021.102012. DOI: https://doi.org/10.1016/j.resourpol.2021.102012

Weiser, A., Bickel, M.W., Kümmerer, K. & Lang, D.J. (2020) Towards a more sustainable metal use – Lessons learned from national strategy documents. Resources Policy, 68, 101770. doi: 10.1016/j.resourpol.2020.101770. DOI: https://doi.org/10.1016/j.resourpol.2020.101770

Wellmer, F.W. (2022) What we have learned from the past and how we should look forward. Mineral Economics, 35 (3–4), pp. 765–795. doi: 10.1007/s13563-021-00296-x. DOI: https://doi.org/10.1007/s13563-021-00296-x

West, J. (2020) Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future. Resources Policy, 65. doi: 10.1016/j.resourpol.2019.101574. DOI: https://doi.org/10.1016/j.resourpol.2019.101574

Zanoletti, A., Cornelio, A. & Bontempi, E. (2021) A post-pandemic sustainable scenario: What actions can be pursued to increase the raw materials availability? Environmental Research, 202. doi: 10.1016/j.envres.2021.111681. DOI: https://doi.org/10.1016/j.envres.2021.111681

Zeng, X. (2023) Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality. Frontiers of Environmental Science & Engineering, 17 (2). doi: 10.1007/s11783-023-1623-2. DOI: https://doi.org/10.1007/s11783-023-1623-2

Zeng, X., Xu, M. & Li, J. (2018) Examining the sustainability of China’s nickel supply: 1950–2050. Resources, Conservation and Recycling, 139, pp. 188–193. doi: 10.1016/j.resconrec.2018.08.011. DOI: https://doi.org/10.1016/j.resconrec.2018.08.011

Zhernov, E., Nekhoda, E. & Petrova, M. (2020) Economic Transformation Impact on the Modernization of a Mineral Resource Industry Cluster. In: S. Vöth, M. Cehlár, J. Janocko, M. Straka, D. Nuray, D. Szurgacz, M. Petrova, Y. Tan, & A. Abay (eds.). Vth International Innovative Mining Symposium. 18 June 2020 E3S Web Conf. p. doi: 10.1051/e3sconf/202017404003. DOI: https://doi.org/10.1051/e3sconf/202017404003

Zou, B., Poncin, S. & Bertinelli, L. (2022) The U.S.-China Supply Competition for Rare Earth Elements: a Dynamic Game View. Environmental Modeling & Assessment, 27 (5), pp. 883–900. doi: 10.1007/s10666-022-09819-4. DOI: https://doi.org/10.1007/s10666-022-09819-4

Artículos similares

También puede {advancedSearchLink} para este artículo.