Índice de redondez corporal como indicador antropométrico para identificar riesgo de síndrome metabólico en médicos del hospital San Francisco del IESS, en la ciudad de Quito

Autores/as

  • Sebastián Vallejo Espinoza
  • Jorge Sánchez Sánchez
  • Washington Paz Cevallos
  • William Guamán Gualpa
  • Fabián Montaluisa Vivas
  • Fabricio Correa
  • Marco Vásquez

DOI:

https://doi.org/10.29166/rfcmq.v43i2.2828

Palabras clave:

índice de masa corporal, síndrome metabólico, antropometría, sobrepeso, índice de redondez corporal

Resumen

Contexto: las enfermedades crónicas no transmisibles revisten interés para la salud pública; algunas de ellas pueden detectarse y predecirse mediante estudios básicos como es la antropometría. El índice de masa corporal (IMC) valora, estratifica y clasifica el nivel de sobrepeso del individuo como factor de riesgo de síndrome metabólico (SM), sin discriminar entre masa muscular y adiposidad que puede dilucidarse mediante el índice de redondez corporal (IRC) y predecir tanto el porcentaje de grasa corporal y el estado de salud. Barazzoni y colaboradores relacionaron tanto al IRC e IMC con el síndrome metabólico; sobre esta relación existen contados estudios, algunos controversiales. Objetivo: demostrar la utilidad del IRC para identificar factores de riesgo de síndrome metabólico y correlacionarlo con el Índice de masa corporal para establecer la utilidad clínica como indicador de riesgo metabólico. Sujetos y métodos: estudio epidemiológico observacional descriptivo transversal de conjunto, en una muestra de 90 médicos del Hospital San Francisco de Quito. Perteneciente al Instituto Ecuatoriano de Seguridad Social. Mediciones principales: estado nutricional según peso, talla, circunferencia abdominal; diagnóstico de síndrome metabólico según «guía para el tratamiento de dislipidemias en adultos» (Adult Treatment Panel III). Resultados: el 16,67% (IC95% 10,37–25,69%) de sujetos fueron diagnosticados con SM demostrándose similar resultado usando IMC e IRC para establecer la condición de SM según criterios diagnósticos del ATPIII (p<0,05). La exactitud del IMC como predictor de riesgo de SM fue 62% y 30% de precisión; para IRC, la exactitud fue 42%, sensibilidad del 23% y 100% de valor predictivo negativo. Conclusión: la prevalencia de síndrome metabólico en médicos es alta. El IRC es útil para el diagnóstico de SM, sin embargo, su mayor aplicación es para descartar su diagnóstico, comparado con el IMC. Se recomienda nuevos estudios.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

Sebastián Vallejo Espinoza

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Jorge Sánchez Sánchez

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Washington Paz Cevallos

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

William Guamán Gualpa

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Fabián Montaluisa Vivas

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Fabricio Correa

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Marco Vásquez

Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito-Ecuado

Citas

Ravasco P, Anderson H, Mardones F. Métodos de valoración del estado nutricional. Nutr Hosp. 2010;

(S3):57–66.

Moreno V, Gómez Gandoy JB, Antoranz González MJ, Gómez de la Cámara A. Concordancia entre

los porcentajes de grasa corporal estimados mediante el área adiposa del brazo, el pliegue del tríceps

y por impedanciometría brazo-brazo. Rev Esp Salud Pública. 2003; 77(3):347–61.

Martínez Roldán C, Veiga Herreros P, López de Andrés a, Cobo Sanz JM, Carbajal Azcona a. Nutritional status assessment in a group of university students by means of dietary parameters and body

composition. Nutr Hosp 2005; 20(3):197–203.

Arroyave, G, Brock, JF, Hegsted, DM, Jelliffe D et al. Expert Committee on Medical Assessment of Nutritional

Status, WHO Technical Report Series, No. 258. Organización Mundial de la Salud:Ginebra. 1963. pp 1–67.

Buffa R, Mereu E, Comandini O, Ibanez ME, Marini E. Bioelectrical impedance vector analysis (BIVA)

for the assessment of two-compartment body composition. Eur J Clin Nutr 2014; 68(11):1234–40.

Organización Mundial de la Salud. El estado físico: uso e interpretación de la antropometría. Comité

de expertos de la OMS. Serie de Informes Técnicos Número 854. Organización Mundial de la Salud:Ginebra. 1993. pp 5-26.

Gómez AB. Evaluación del estado nutricional del adulto mediante la antropometría. Rev Cuba Aliment Nutr 2002; 16(2):146–52.

Tian S, Zhang X, Xu Y, Dong H. Feasibility of body roundness index for identifying a clustering of

cardiometabolic abnormalities compared to BMI, waist circumference and other anthropometric indices. Medicine (Baltimore) 2016; 95(34):e4642.

Zalesin KC, Franklin BA, Miller WM, Peterson ED, Mccullough PA. Impact of obesity on cardiovascular disease. Med Clin N Am 2011; 95:919–37.

Hossain P, Kawar B. Obesity and diabetes in the developing world- a growing challenge. N Engl J Med

; 356(3):213–5.

Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body

mass index. PLoS One 2012l; 7(7):e39504. doi: 10.1371/journal.pone.0039504

World Health Organization. Fact sheets. Obesity and overweight. 2018. Disponible en https://www.

who.int/news-room/fact-sheets/detail/obesity-and-overweight

Gawrys W, Zyska A. Anthropometric indicators and their applications for assessing population’s

health condition. Hygeia Public Heal. 2017;52(1):41–7

Ng M, Fleming T, Robinson M, et al. Global, regional and national prevalence of overweight and obesity in children and adults 1980-2013: A systematic analysis. Lancet 2014; 384(9945):766–81.

Sánchez J, Montaluisa F, Correa F, Guamán W, Paz W, Vásquez M, et al. Hipertrigliceridemia asociada

a sobrepeso y obesidad en médicos del hospital San Francisco del IESS, en la ciudad de Quito: una

alerta para los profesionales médicos. Rev Fac Cien Med 2017; 42(2):104–13.

Organización Mundial de la Salud. Dieta, nutrición y prevención de enfermedades crónicas. Serie

Informes técnicos No916. Organización Mundial de la Salud:Ginebra. 2003. pp 13–21.

Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 2004; 79:379–84.

Pajunen P, Jousilahti P, Borodulin K, Harald K, Tuomilehto J. Body fat measured by a near-infrared

interactance device as a predictor of cardiovascular events: The FINRISK’92 Cohort. Obesity 2009;

(4):848–52.

Liu PJ, Ma F, Lou HP, Zhu YN. Body roundness index and body adiposity index: two new anthropometric indices to identify metabolic syndrome among Chinese postmenopausal women. Climacteric

; 19(5):433–9.

Carvajal CC. Síndrome metabólico: definiciones, epidemiología, etiología, componentes y tratamiento. Medicina Legal de Costa Rica 2017; 34(1):175-193.

Gómez I, González J. Dislipemia diabética, síndrome metabólico y riesgo cardiovascular. Rev Esp

Cardiol Supl 2006; 6(SG):13–23.

Duque P, Alonso O, Naranjo S, César J, Arias S, Carlos J, et al. Evaluación de la distribución de

los criterios diagnósticos para síndrome metabólico, en Pereira, Colombia. Investig. Andina 2013;

(27):746-743.

Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships

between body roundness with body fat and visceral adipose tissue emerging from a new geometrical

model. Obesity. 2013; 21(11):2264–71.

Li G, Wu H, Wu X, Cao Z, Tu Y, Ma Y, et al. The feasibility of two anthropometric indices to identify

metabolic syndrome, insulin resistance and inflammatory factors in obese and overweight adults.

Nutrition 2019; 57:194–201.

Wang H, Liu A, Zhao T, Gong X, Pang T, Zhou Y, et al. Comparison of anthropometric indices for

predicting the risk of metabolic syndrome and its components in Chinese adults: a prospective, longitudinal study. BMJ Open 2017; 7(9):1–10.

Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J

Obes 2012; 36(2):286–94.

Bray GA, Smith SR, de Jonge L, Xie H, Rood J, Martin CK, et al. Effect of dietary protein content on

weight gain, energy expenditure, and body composition during overeating: a randomized controlled

trial. Jama 2012; 307(1):47–55.

Organización Mundial de la Salud. Obesity: preventing and managing the global epidemic. Serie

Informes Técnicos No 894. Organización Mundial de la Salud:Ginebra. 2000. pp 2-12.

Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Zanetti M, Gabrielli A, et al. Central adiposity

markers, plasma lipid profile and cardiometabolic risk prediction in overweight-obese individuals.

Clin Nutr 2018; 38(3):1–9.

World health statistics 2018: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.pp 18-20

Liu PJ, Ma F, Lou HP, Zhu YN. Comparison of the ability to identify cardio metabolic risk factors

between two new body indices and waist-to-height ratio among Chinese adults with normal BMI and

waist circumference. Public Health Nutr 2017; 20(6):984–91.

Moreno C, Cabrerizo L, Rubio Montañés M. Guías para el tratamiento de las dislipemias en el adulto:

Adult Treatment Panel III (ATP-III). Endocrinología y Nutrición 2004; 51(5):254-266.

Freire de Freitas R, Moura de Araújo M, Gueiros Gaspar M, Garcia Lira Neto J, Parente Garcia Alencar

A, Zanetti M, Coelho Damasceno M. Comparison of three criteria for metabolic syndrome among

Brazilian university students. Nutrition & Food Science 2017; 47(4):543-552.

Gil Llinás M, Janer PE, Agudo SG, Casquero RG, González IC. Usefulness in nursing of different anthropometric and analytical indices to assess the existence of metabolic syndrome with

the NCEP ATP III and IDF criteria in Spanish Mediterranean population. Med Balear 2017;

(1):26–34.

Correa LF, Sánchez JM, Montaluisa FG, Guamán WM, Paz WR. EL síndrome metabólico en aumento en médicos del hospital San Francisco del IESS, de la ciudad de Quito. Revista de la Facultad de

Ciencias Médicas Quito 2016; 41(1):103–12.

Zhao Q, Zhang K, Li Y, Zhen Q, Shi J, Yu Y, et al. Capacity of a body shape index and body roundness

index to identify diabetes mellitus in Han Chinese people in Northeast China: a cross-sectional study.

Diabet Med 2018; 35(11):1580-1587.

Zhang J, Fang L, Qiu L, Huang L, Zhu W, Yu Y. Comparison of the ability to identify arterial stiffness

between two new anthropometric indices and classical obesity indices in Chinese adults. Atherosclerosis 2017; 263:263–71.

Descargas

Publicado

2018-12-01

Cómo citar

1.
Vallejo Espinoza S, Sánchez Sánchez J, Paz Cevallos W, Guamán Gualpa W, Montaluisa Vivas F, Correa F, Vásquez M. Índice de redondez corporal como indicador antropométrico para identificar riesgo de síndrome metabólico en médicos del hospital San Francisco del IESS, en la ciudad de Quito. Rev Fac Cien Med (Quito) [Internet]. 1 de diciembre de 2018 [citado 19 de diciembre de 2024];43(2):116-24. Disponible en: https://revistadigital.uce.edu.ec/index.php/CIENCIAS_MEDICAS/article/view/2828