Impact Assessment of V2G Ancillary Services on a Distribution Network: A Case Study of the Centro Babahoyo Feeder

Main Article Content

Martín Junior Mainato Baren
https://orcid.org/0009-0005-6922-5640
Frixon Samuel Macías Salazar
https://orcid.org/0009-0003-8284-9744
Cristian Samuel Laverde Albarracín
https://orcid.org/0000-0002-5611-0167

Abstract

The article addresses the implementation of Vehicle-to-Grid (V2G) technology in the electrical grid of Babahoyo, Ecuador, to evaluate its influence on energy efficiency. Despite the technological growth in electrical networks, with the integration of renewable energies and control devices, such as electric vehicles (EVs), there is a lack of previous research in Babahoyo and studies on V2G. Ecuador consumes a significant portion of its energy in fossil fuels for transportation, and EVs are considered an efficient and ecological solution. V2G technology allows EVs to inject energy into the grid during peak demand, improving efficiency and regulating power. The study includes simulations that reveal that the incorporation of Electric Vehicle Charging Stations (EVSE) in the Babahoyo network smoothes demand on weekdays, reduces overload in transformers and improves the quality of the electrical supply.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
[1]
M. J. Mainato Baren, F. S. Macías Salazar, and C. S. Laverde Albarracín, “Impact Assessment of V2G Ancillary Services on a Distribution Network: A Case Study of the Centro Babahoyo Feeder”, INGENIO, vol. 8, no. 2, pp. 143–156, Jul. 2025.
Section
Case Studies
Author Biographies

Martín Junior Mainato Baren, Universidad Técnica Estatal de Quevedo, UTEQ

martin230junior@outlook.es

https://orcid.org/0009-0005-6922-5640

 

Frixon Samuel Macías Salazar, Universidad Técnica Estatal de Quevedo, UTEQ

samuelmacias730@gmail.com

https://orcid.org/0009-0003-8284-9744

 

Cristian Samuel Laverde Albarracín , Universidad Técnica Estatal de Quevedo, UTEQ

csla56@yahoo.com

https://orcid.org/0000-0002-5611-0167

References

F. Samuel et al., “Análisis de la incorporación de sistemas fotovoltaicos tipo red en el alimentador centro Babahoyo 13.8kv de CNEL EP unidad de negocios Los Ríos,” Universidad Tecnica Estatal de Quevedo, Quevedo, 2022. Accessed: Aug. 20, 2023. [Online]. Available: https://repositorio.uteq.edu.ec/server/api/core/bitstreams/58785567-4aed-4380-8cb6-a6848bf22db7/content

Delgado Erick and Medina Jose, “Análisis del impacto de la implementación de la tecnología V2G en redes de distribución eléctrica,” pp. 1–128, 2021, Accessed: Aug. 02, 2023. [Online]. Available: http://dspace.ucuenca.edu.ec/handle/123456789/36033

Camino Gabriela, “Análisis técnico y económico de la integración de flotas de vehículos eléctricos a nivel residencial en sistemas modernos de distribución de energía eléctrica,” 2022. Accessed: Aug. 20, 2023. [Online]. Available: https://bibdigital.epn.edu.ec/bitstream/15000/22793/1/CD%2012277.pdf

Carlos Perez, “Transporte lidera estadísticas de consumo energético en Ecuador,” Quito, 2022.

G. K. R. Nikhil, “Impact of EV on Integration with Grid System A Review,” 8th International Conference on Power Systems (ICPS), Apr. 2020, doi: 10.1109/ICPS48983.2019.9067587.

Carrera, “Estimacion de costos de energia electrica para la recarga de vehiculos electricos basado en la optima respuesta de la demanda,” 2020.

W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: Calculating capacity and net revenue,” J Power Sources, vol. 144, no. 1, pp. 268–279, Jun. 2005, doi: 10.1016/j.jpowsour.2004.12.025.

LugEnergy, “¿Qué es la ISO 15118?,” 2023.

A. Internacional de Energías Renovables, Perspectivas de innovación: Carga inteligente para vehículos eléctricos. 2019. [Online]. Available: www.irena.org

CTN 203, “UNE-EN IEC 61851-1 Sistema conductivo de carga para vehículos eléctricos,” 2022, Accessed: Sep. 09, 2023. [Online]. Available: file:///D:/DESCARGAS%20NAVEGADOR/(EX)UNE-EN_IEC_61851-1=2020-2.pdf

CHAdeMO, “A decade of in-market experience with V2G/VGI,” 2022. https://www.chademo.com/technology/v2g (accessed Aug. 22, 2023).

Floox, “¿Qué es el sistema CCS2 en la carga de un vehículo eléctrico?,” 2023.

H. Asgeirsson, “Electric Vehicle V2G AC Standards SAE, IEEE, UL,” 2021.

Frédéric Wauquiez, “IEEE 2030.5 – Connect to the Wide World of Distributed Energy Resources.” https://www.ge.com/digital/tech/ieee-20305-connect-wide-world-distributed-energy-resources (accessed Sep. 09, 2023).

SunSpec Alliance, “IEEE-2030.5-V2G-AC-Profile Implementation Guide for SAE J3072,” 2022, Accessed: Sep. 08, 2023. [Online]. Available: https://sunspec.org/wp-content/uploads/2022/06/SunSpec-IEEE-2030.5-V2G-AC-Profile-TEST-1.0.pdf

B. Dumnić et al., IEEE EUROCON 2019 : 18th International Conference on Smart Technologies : 1st - 4th July 2019, Novi Sad, Serbia.

J. Wang, G. R. Bharati, S. Paudyal, O. Ceylan, B. P. Bhattarai, and K. S. Myers, “Coordinated Electric Vehicle Charging with Reactive Power Support to Distribution Grids,” IEEE Trans Industr Inform, vol. 15, no. 1, pp. 54–63, Jan. 2019, doi: 10.1109/TII.2018.2829710.

T. Jonas, N. Daniels, and G. Macht, “Electric Vehicle User Behavior: An Analysis of Charging Station Utilization in Canada,” Energies (Basel), vol. 16, no. 4, Feb. 2023, doi: 10.3390/en16041592.