Sistemas SCADA, Aplicaciones en Plantas Potabilizadoras de Agua de la Costa Ecuatoriana, Caso Municipio del Cantón El Empalme

Contenido principal del artículo

Carlos David Amaya Jaramillo
Geovanny Gonzalo Guerrero Muñoz
https://orcid.org/0009-0007-5029-6371
Cristian Samuel Laverde Albarracín
https://orcid.org/0000-0002-5611-0167
Rogger José Andrade Cedeño
https://orcid.org/0000-0002-5280-4575

Resumen

resumen 


Este trabajo describe el diseño de un sistema SCADA para mejorar el servicio de agua potable en el municipio del Cantón El Empalme, Ecuador. Se detallan las fases del diseño, los criterios para el análisis del estado de automatización de la planta, el diseño de la automatización y la selección de dispositivos. El sistema SCADA, que utiliza PLCs, sensores y bombas conectados a través del protocolo ModBus TCP, mejoró la eficiencia operativa, redujo los tiempos de respuesta y contribuyó a la calidad del producto final. Se identificaron problemas como desequilibrio en las protecciones de los tableros y tiempos de respuesta prolongados, los cuales fueron abordados mediante la simulación del modelo de automatización.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Amaya Jaramillo , C. D., Guerrero Muñoz, G. G., Laverde Albarracín, C. S., & Andrade Cedeño, R. J. (2025). Sistemas SCADA, Aplicaciones en Plantas Potabilizadoras de Agua de la Costa Ecuatoriana, Caso Municipio del Cantón El Empalme . INGENIO, 8(1), 83–90. https://doi.org/10.29166/ingenio.v8i1.6846
Sección
Case Studies/Estudio de Caso
Biografía del autor/a

Carlos David Amaya Jaramillo , Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Área de Especialización: Electricidad y Energía

camaya@utq.edu.ec

Geovanny Gonzalo Guerrero Muñoz, Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Área de Especialización: Electricidad y Energía 

geovanny.guerrero2015@uteq.edu.ec

Cristian Samuel Laverde Albarracín, Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Universidad Estatal de Quevedo -UTEQ, Quevedo - Ecuador

Área de Especialización: Electricidad y Energía

claverde@uteq.edu.ec

Rogger José Andrade Cedeño, Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Manabí - Ecuador

Escuela Superior Politécnica Agropecuaria de Manabí
Manuel Félix López

Área de Especialización: Electrónica, Automatización Industrial y Sistemas de Control

rjandrade@espam.edu.ec

Citas

​​[1] A. Rezai, P. Keshavarzi, and Z. Moravej, “Key management issue in SCADA networks: A review,” Engineering Science and Technology, an International Journal, vol. 20, no. 1. Elsevier B.V., pp. 354–363, Feb. 01, 2017. doi: 10.1016/j.jestch.2016.08.011.

​[2] E. Luiijf, M. Ali, and A. Zielstra, “Assessing and improving SCADA security in the Dutch drinking water sector,” International Journal of Critical Infrastructure Protection, vol. 4, no. 3–4, pp. 124–134, Dec. 2011, doi: 10.1016/j.ijcip.2011.08.002.

​[3] K. Saravanan, E. Anusuya, R. Kumar, and L. H. Son, “Real-time water quality monitoring using Internet of Things in SCADA,” Environ Monit Assess, vol. 190, no. 9, Sep. 2018, doi: 10.1007/s10661-018-6914-x.

​[4] G. Yadav and K. Paul, “Architecture and security of SCADA systems: A review,” International Journal of Critical Infrastructure Protection, vol. 34. Elsevier B.V., Sep. 01, 2021. doi: 10.1016/j.ijcip.2021.100433.

​[5] R. R. R. Barbosa and A. Pras, “Intrusion Detection in SCADA Networks,” 2010, pp. 163–166. doi: 10.1007/978-3-642-13986-4_23.

​[6] D. Babunski, E. Zaev, A. Tuneski, and D. Bozovic, “Optimization methods for water supply SCADA system,” in 2018 7th Mediterranean Conference on Embedded Computing (MECO), IEEE, Jun. 2018, pp. 1–4. doi: 10.1109/MECO.2018.8405970.

​[7] A. Panchal, K. Dagade, S. Tamhane, K. Pawar, and P. Ghadge, “Automated Water Supply System and Water Theft Identification Using PLC and SCADA,” 2014. [Online]. Available: www.ijera.com

​[8] D. Ecob, “PLCs and SCADA - a water industry experience,” in IEE Colloquium on `Application of Advanced PLC (Programmable Logic Controller) Systems with Specific Experiences from Water Treatment’, IEE, 1995, pp. 6–6. doi: 10.1049/ic:19950742.

​[9] A. Archana and B. Yadav, “PLC & SCADA based automation of filter house, a section of Water Treatment Plant,” in 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking, IEEE, Dec. 2012, pp. 1–6. doi: 10.1109/ET2ECN.2012.6470057.

​[10] E. Ahmad Zaki Hamidi, M. Ridlo Effendi, and H. Ash Shiddiq, “Design and Implementation Supervisory Control and Data Acquisition (SCADA) of Sedimentation Process of Water Treatment Plant (WTP) by Using Raspberry PI 3 B,” in 2018 4th International Conference on Wireless and Telematics (ICWT), IEEE, Jul. 2018, pp. 1–7. doi: 10.1109/ICWT.2018.8527736.

​[11] H. A. Umachagi, P. Kulkarni, and M. Bilagikar, “Implementation of Automated Water Supply and Distribution using PLC and SCADA,” in 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), IEEE, Oct. 2020, pp. 1–3. doi: 10.1109/B-HTC50970.2020.9297887.

​[12] E. A. Z. Hamidi, T. Gustiana, M. R. Effendi, and P. A. M. Hambali, “Design and Implementation Supervisory Control and Data Acquisition (SCADA) of Flocculation Process of Water Treatment Plant (WTP) Using Raspberry Pi,” in 2019 IEEE 5th International Conference on Wireless and Telematics (ICWT), IEEE, Jul. 2019, pp. 1–5. doi: 10.1109/ICWT47785.2019.8978240.

​[13] D. Babunski, E. Zaev, A. Tuneski, and D. Bozovic, “Optimization methods for water supply SCADA system,” in 2018 7th Mediterranean Conference on Embedded Computing (MECO), IEEE, Jun. 2018, pp. 1–4. doi: 10.1109/MECO.2018.8405970.

​[14] Andrade-Cedeño, R. (2020). Módulo didáctico para controlar nivel y caudal de agua, mediante sistema SCADA, PLC y algoritmo PID. RIEMAT 2019, 4, 50–62. https://doi.org/10.33936/riemat.v4i2.2196

​[15] Karnik, N., Bora, U., Bhadri, K., Kadambi, P., & Dhatrak, P. (2022). A comprehensive study on current and future trends towards the characteristics and enablers of industry 4.0. Journal of Industrial Information Integration, 27, 100294. https://doi.org/10.1016/j.jii.2021.100294

​[16] Parashar, B., Sharma, R., Rana, G., Balaji, R.D. (2023). Foundation Concepts for Industry 4.0. In: Nayyar, A., Naved, M., Rameshwar, R. (eds) New Horizons for Industry 4.0 in Modern Business. Contributions to Environmental Sciences & Innovative Business Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-20443-2_3.

​[17] Nechibvute, A., & Mafukidze, H. D. (2023). Integration of SCADA and Industrial IoT: Opportunities and Challenges. IETE Technical Review, 41(3), 312–325. https://doi.org/10.1080/02564602.2023.2246426

​[18] Eden, P. et al. (2017). SCADA System Forensic Analysis Within IIoT. In: Thames, L., Schaefer, D. (eds) Cybersecurity for Industry 4.0. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-319-50660-9_4

​[19] Suryadarma, E., & Ai, T. (2020). Predictive Maintenance in SCADA-Based Industries: A literature review. International Journal of Industrial Engineering and Engineering Management, 2(1), 57–70. https://doi.org/10.24002/ijieem.v2i1.4368

​[20] W. Udo and Y. Muhammad, "Data-Driven Predictive Maintenance of Wind Turbine Based on SCADA Data," in IEEE Access, vol. 9, pp. 162370-162388, 2021, doi: 10.1109/ACCESS.2021.3132684.

​[21] G. Falco, C. Caldera and H. Shrobe, "IIoT Cybersecurity Risk Modeling for SCADA Systems," in IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4486-4495, Dec. 2018, doi: 10.1109/JIOT.2018.2822842.

​[22] A. Sajid, H. Abbas and K. Saleem, "Cloud-Assisted IoT-Based SCADA Systems Security: A Review of the State of the Art and Future Challenges," in IEEE Access, vol. 4, pp. 1375-1384, 2016, doi: 10.1109/ACCESS.2016.2549047.

Artículos similares

También puede {advancedSearchLink} para este artículo.