Kinetic study of the thermal decomposition of high density polyethylene (hdpe) post consumption at different heating rates

Main Article Content

Paúl Palmay
https://orcid.org/0000-0002-9172-4113
Renee Nickole Jaramillo-Uvidia
Carlos Medina

Abstract

The thermal degradation of the post-consumer high-density polyethylene (HDPE) to determine the chemical kinetics is the objective of this research. It was developed through thermogravimetric analysis (TGA) at 5, 10 and 15º C min-1 heating rates, under nitrogen atmosphere at 20 mL min-1 and dynamic conditions from 25 to 900º C. The degradation process data (mass vs time) and the first derivative were obtained from that data and were applied in three isoconversional kinetic models to determine the activation energy: Friedman (FR), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO), in addition to the reaction model known as Sphere of Contraction (R2). All the described models fit well for the thermoplastics treatment, however, the models that best describe the degradation kinetics for HDPE are the KAS and FWO models, in this models the activation energy were 281, 248 and 232 kJ kmol-1 for 5, 10 and 15º C min-1 heating rates respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Palmay, P., Jaramillo-Uvidia, R. N., & Medina, C. (2021). Kinetic study of the thermal decomposition of high density polyethylene (hdpe) post consumption at different heating rates. FIGEMPA: Investigación Y Desarrollo, 11(1), 61–67. https://doi.org/10.29166/revfig.v11i1.3132
Section
Artículos
Author Biographies

Paúl Palmay, Escuela Superior Politécnica de Chimborazo ESPOCH. Riobamba - Ecuador

Ciencias, Carrera de Ingeniería Química, Riobamba.

Grupo de Investigación Ambiental y Desarrollo GIADE, Riobamba, Ecuador

https://orcid.org/0000-0002-9172-4113

Renee Nickole Jaramillo-Uvidia, Escuela Superior Politécnica de Chimborazo ESPOCH. Riobamba - Ecuador

Escuela Superior Politécnica de Chimborazo, Ciencias, Carrera de Ingeniería Química, Riobamba.

Grupo de Investigación Ambiental y Desarrollo GIADE, Riobamba, Ecuador

https://orcid.org/0000-0002-5455-2914

Carlos Medina, Escuela Superior Politécnica de Chimborazo ESPOCH. Riobamba - Ecuador

Escuela Superior Politécnica de Chimborazo, Ciencias, Carrera de Ingeniería Química, Riobamba.

Grupo de Investigación Ambiental y Desarrollo GIADE, Riobamba, Ecuador

https://orcid.org/0000-0003-4916-7242

References

Aboulkas, A., El harfi, K., y El Bouadili, A., 2010. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms, Energy Conversion and Management, 51(7), pp. 1363–1369. doi: 10.1016/j.enconman.2009.12.017

Al-Salem, S.M., 2019. Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system for the production of high value gasoline range hydrocarbons (HC), Process Safety and Environmental Protection,127(7), pp.171–179.

Al-Salem, S.M., Antelava, A., Constantinou, A., Manos, G., y Dutta, A., 2017. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW), Journal of Environmental Management, 197(07), pp. 177–98. doi: 10.1016/j.jenvman.2017.03.084

Al-Salem, S.M., y Lettieri, P., 2010. Kinetic study of high density polyethylene (HDPE) pyrolysis, Chemical Engineering Research and Design, 88(12), pp. 1599–1606. doi: 10.1016/j.cherd.2010.03.012

Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., y Aroua, M.K., 2016. A review on pyrolysis of plastic wastes, Energy Conversion and Management, 115(5), pp. 308–326. doi: 10.1016/j.enconman.2016.02.037

Arandes, J.M., Abajo, I., López-Valerio, D., Fernández, I., Azkoiti, M.J., Olazar, M., 1997. Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking, Ind Eng Chem Res., 36(11), pp.4523–4529.

Ceamanos, J., Mastral, J.F., Millera, A., y Aldea, M.E., 2002. Kinetics of pyrolysis of high density polyethylene. Comparison of isothermal and dynamic experiments. Journal of Analytical and Applied Pyrolysis, 65(2), pp. 93–110. doi: 10.1016/S0165-2370(01)00183-8

Charde, S.J., Sonawane, S.S., Sonawane, S.H., y Shimpi, N.G., 2018. Degradation kinetics of polycarbonate composites: Kinetic parameters and artificial neural network, Chemical and Biochemical Engineering Quarterly, 32(2), pp.151–165. doi: 10.15255/CABEQ.2017.1173

Das, P., y Tiwari, P., 2017. Thermal degradation kinetics of plastics and model selection, Thermochimica Acta, 654 (9), pp. 191–202. doi: 10.1016/j.tca.2017.06.001

Gao, Z., Amasaki, I., y Nakada, M. A., 2003. thermogravimetric study on thermal degradation of polyethylene, Journal of Analytical and Applied Pyrolysis, 67(1), pp. 1–9. doi: 10.1016/S0165-2370(02)00010-4

Gutiérrez, O., y Palza, H., 2015. Effect of carbon nanotubes on thermal pyrolysis of high density polyethylene and polypropylene. Polymer Degradation and Stability, 120(10), pp. 122–134. doi: 10.1016/j.polymdegradstab.2015.06.014

Heidbreder, L.M., Bablok, I., Drews, S., y Menzel, C., 2019. Tackling the plastic problem: A review on perceptions, behaviors, and interventions, Science of the Total Environment, 668(6), pp. 1077–1093. doi: 10.1016/j.scitotenv.2019.02.437

Khedri, S., y Elyasi, S., 2016. Kinetic analysis for thermal cracking of HDPE: A new isoconversional approach, Polym Degrad Stab, 129(7), pp. 306–318. doi: 10.1016/j.polymdegradstab.2016.05.011

Krehula, L.K., Katancǐć, Z., Siročić, A.P., y Hrnjak-Murgić, Z., 2014. Weathering of high-density polyethylene-wood plastic composites, Journal of Wood Chemistry and Technology, 34(1), pp. 39–54. doi: 10.1080/02773813.2013.827209

Li, D., Lei, S., Wang, P., Zhong, L., Ma, W., y Chen, G., 2021. Study on the pyrolysis behaviors of mixed waste plastics, Renewable Energy; 173, pp. 662–474. doi: 10.1016/j.renene.2021.04.035

Lovás, P., Hudec, P., Jambor, B., Hájeková, E. y Horňáček, M., 2017. Catalytic cracking of heavy fractions from the pyrolysis of waste HDPE and PP, Fuel, 203(9), pp. 244–252.

Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Ismail, I.M.I., y Nizami, A.S., 2017. Effect of plastic waste types on pyrolysis liquid oil, International Biodeterioration & Biodegradation, 119(4) pp. 239–252. doi: 10.1016/j.ibiod.2016.09.017

Sakakibara, M., Okada, F., Horiuchi, M., Suzuki, K., 1989. Kinetic Analysis of Thermogravimetric Data, Nippon Kagaku Kaishi, 1989(10), pp.1729–1732.

Singh, R.K., Ruj, B., Sadhukhan, A.K., y Gupta, P., 2020. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. Journal of the Energy Institute, 93(3), pp. 1020–1035. doi: 10.1016/j.joei.2019.09.003

Thomas, P., Rumjit, N.P., Lai, C.W., Johan, M.R.B., y Saravanakumar, M.P., 2020. Polymer-Recycling of Bulk Plastics, Encyclopedia of Renewable and Sustainable Materials, 2, pp. 211–227.

Xu, F., Wang, B., Yang, D., Hao, J., Qiao, Y., y Tian, Y., 2018. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis, Energy Convers Manag, 171(4), pp. 1106–1115.

Xue, Y., Johnston, P., y Bai, X., 2017. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics, Energy Conversion and Management, 142(6), pp. 441–451. doi: 10.1016/j.enconman.2017.03.071

Yang, J., Miranda, R., y Roy, C., 2001. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers, Polymer Degradation and Stability, 73(3), pp. 455–61. doi: 10.1016/S0141-3910(01)00129-X