¿Son los tapones auditivos eficaces para prevenir los efectos de la contaminación auditiva mediante la atenuación sonora?

Authors

  • Fausto Coello Universidad Central del Ecuador
  • Diego Males Universidad Central del Ecuador
  • Denisse Tello Universidad Central del Ecuador
  • Ramiro López -Pulles Universidad Central del Ecuador

DOI:

https://doi.org/10.29166/ciencias_medicas.v42i1.1541

Keywords:

sound attenuation, hearing protectors, noise induced hearing loss, auditory contamination

Abstract

Context: the effects of exposure to noise pollution include auditory symptoms: hearing loss, elevation of the auditory threshold, acoustic trauma and also non-auditory psychological, physical and social.
Material and methods: a descriptive, analytical, cross-sectional study, the efficacy of the sound attenuation of the personalized hearing protectors was determined in a group of 33 male patients without physical alterations in the external auditory canal, by means of the comparison of the responses obtained in the ear Real-Ear Unaided Response, and with the ear sealed by means of a custom-made silicone plug (Real-Ear Occluded), in the presence of stable external broadband noise of 65 dB Of intensity, using a precision equipment certified with ISO standards, the Verifit of Audioscan.

Results: it was found that there is a greater protection to high decibels with frequencies 2000 Hz, 3000 Hz and 4000 Hz, falling from 65 to 40 decibels, which means a reduction of 61%, there is no significant difference between both ears, Which is explained by the particularities in the anatomical forms, depth of insertion and the proper placement of the microphone probe. The average bilateral attenuation values in dB SPL that is achieved in the different frequencies with personalized ear protection plugs vary depending on the same, with 250 Hz being 9.97 in the right ear and 9.36 in the left ear and with 6000 Hz 15.28 in the right ear and 13.64 in the left ear. Greater attenuation was found with 3000 Hz (OD: 32.11 OI: 30.69), 2000 Hz (OD: 28.33 OI: 28.47) and 4000
Hz (OD: 27.28 OI: 26.67).
Conclusion: the use of hearing protectors; Achieves an evident reduction of the sound levels, especially with acute frequencies, which are the first ones whose thresholds are affected when undergoing high levels of noise for prolonged times

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Fausto Coello, Universidad Central del Ecuador

Facultad de Ciencias Médicas de la Universidad Central del Ecuador

Diego Males, Universidad Central del Ecuador

Facultad de Ciencias Médicas de la Universidad Central del Ecuador

Denisse Tello, Universidad Central del Ecuador

Facultad de Ciencias Médicas de la Universidad Central del Ecuador

Ramiro López -Pulles, Universidad Central del Ecuador

Facultad de Ciencias Médicas de la Universidad Central del Ecuador

References

Adeninskaya EE, Bukhtiarov IV, Bushmanov AIu, Dayhes NA, Denisov EI, Izmerov NF, Mazitova NN, Pankova VB, Preobrazhenskaya EA, Prokopenko LV, Simonova NI, Tavartkiladze GA, Fedina IN. Federal clinical recommendations in diagnosis, treatment and prevention of hearing loss due to noise. Med TrProm Ekol 2016; 3:37-48.

Aliabadi M, Fereidan M, Farhadian M, Tajik L. Determining the effect of worker exposure conditions on the risk of hearing loss in noisy industrial workroom using Cox proportional hazard model. Int J Occup Saf Ergon 2015; 21(2):201-6.

Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, Stansfeld S. Auditory and non-auditory effects of noise on health. Lancet 2014; 383(9925):1325-32.

Birkner L. Addressing noise in the workplace. Occup Health Saf 2015; 84(3):19-20, 22.

Burns KN, Sun K, Fobil JN, Neitzel RL. Heart rate, stress, and occupational noise exposure among electronic waste recycling workers. Int J Environ Res Public Health 2016; 13(1).

Denisov ÉI, Adeninskaia EE, Eremin AL, Kur'erov NN. Occupational hearing loss--problem of health and safety. Med Tr Prom Ekol 2014; 7:45-7.

Deshaies P, Martin R, Belzile D, Fortier P, Laroche C, Leroux T, Nélisse H, Girard SA, Arcand R, Poulin M, Picard M. Noise as an explanatory factor in work-related fatality reports. Noise Health 2015; 17(78):294-9.

Izmerov NF, Denisov ÉI, Adeninskaia EE, Gorblianskiĭ IuIu. Criteria for the assessment of the noise-induced occupational hearing loss: international and national standards. Vestn Otorinolaringol 2014; (3):66-71.

Jazani RK, Saremi M, Rezapour T, Kavousi A, Shirzad H. Influence of traffic-related noise and air pollution on self-reported fatigue. Int J Occup Saf Ergon 2015; 21(2):193-200.

Kabe I, Koga Y, Kochi T, Miyauchi H, Minozoe A, Kuwata D, Tsustumi I, Nakagawa M, Tanaka S. A survey of the otoacoustic emissions (OAEs) of workers exposed to noise in manufacturing factories. Sangyo Eiseigaku Zasshi 2015; 57(6):306-13.

Keppler H, Ingeborg D, Sofie D, Bart V. The effects of a hearing education program on recreational noise exposure, attitudes and beliefs toward noise, hearing loss, and hearing protector devices in young adults. Noise Health 2015; 17(78):253-62.

Kovalova M, Mrazkova E, Sachova P, Vojkovska K, Tomaskova H, Janoutova J, Janout V. Hearing loss in persons exposed and not exposed to occupational noise. J Int Adv Otol 2016; 12(1):49-54.

Liming BJ, Carter J, Cheng A, Choo D, Curotta J, Carvalho D, Germiller JA, Hone S, Kenna MA, Loundon N, Preciado D, Schilder A, Reilly BJ, Roman S, Strychowsky J, Triglia JM, Young N, Smith RJ. International Pediatric Otolaryngology Group (IPOG) consensus recommendations: hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 2016; 90:251-258.

Masterson L, Howard J, Liu ZW, Phillips J. asymmetrical hearing loss in cases of industrial noise exposure: a systematic review of the literature. Otol Neurotol 2016; 37(8):998-1005.

Matoba T. Human response to vibration stress in Japanese workers: lessons from our 35-year studies. A narrative review. Ind Health 2015; 53(6):522-32.

Menezes Pde L, Andrade KC, Carnaúba AT, Cabral FB, Leal Mde C, Pereira LD. Sound localization and occupational noise. Clinics (Sao Paulo) 2014; 69(2):83-6.

Pawlaczyk-Łuszczyńska M, Dudarewicz A, Czaja N, Bortkiewicz A. Do hearing threshold levels in workers of the furniture industry reflect their exposure to noise? Med Pr 2016; 67(3):337-51.

Rocha CH, Longo IA, Moreira RR, Samelli AG. Evaluation of the hearing protector in a real work situation using the field-microphone-in-real-ear method. Codas 2016; 28(2):99-105.

Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2017; 26(1):85-96.

Skogstad M, Johannessen HA, Tynes T, Mehlum IS, Nordby KC, Lie A. Systematic review of the cardiovascular effects of occupational noise. Occup Med (Lond) 2016; 66(6):500.

Turcot A, Girard SA, Courteau M, Baril J, Larocque R. Noise-induced hearing loss and combined noise and vibration exposure. Occup Med (Lond) 2015; 65(3):238-44.

Verbeek JH, Kateman E, Morata TC, Dreschler WA, Mischke C. Interventions to prevent occupational noise-induced hearing loss: a Cochrane systematic review. Int J Audiol 2014; 53(S2):84-96.

Wooles N, Mulheran M, Bray P, Brewster M, Banerjee AR. Comparison of distortion product otoacoustic emissions and pure tone audiometry in occupational screening for auditory deficit due to noise exposure. J Laryngol Otol 2015; 129(12):1174-81.

Published

2017-06-01

How to Cite

1.
Coello F, Males D, Tello D, López -Pulles R. ¿Son los tapones auditivos eficaces para prevenir los efectos de la contaminación auditiva mediante la atenuación sonora?. Rev Fac Cien Med (Quito) [Internet]. 2017 Jun. 1 [cited 2024 Dec. 19];42(1):108-13. Available from: https://revistadigital.uce.edu.ec/index.php/CIENCIAS_MEDICAS/article/view/1541