Characterization and experimental evaluation of sour gas as an alternative fuel for power generation in refineries

Main Article Content

Israel Alejandro Murillo Calderon
https://orcid.org/0009-0008-3985-152X

Abstract

In hydrocarbon refineries, combustible gases generated as byproducts during crude oil processing represent a secondary energy source with high potential for self-sufficiency. This study assesses the technical feasibility of utilizing sour gas as an alternative fuel for power generation at La Libertad Refinery, located in La Libertad canton, Santa Elena province, Ecuador—contributing to sustainability strategies and operational efficiency within the oil industry. The primary objective was to characterize the sour gas physicochemically and evaluate its energy performance under real operating conditions. Field sampling was conducted across various processing units, employing gas chromatography to determine its composition and calorific value. Furthermore, its applicability in thermal and electrical generation systems was analyzed, considering critical variables such as conversion efficiency, contaminant content, and pretreatment requirements. Results indicate that sour gas possesses a calorific value of 1.772,8 BTU/ft³, enabling the potential generation of approximately 36.014,20 kWh/day. This energy output could substantially reduce the refinery’s dependence on external electricity sources. Under optimal conditions, sour gas utilization could displace up to 9.280,60 gallons of diesel per day, lowering operating costs and minimizing the carbon footprint. However, its high hydrogen sulfide (H₂S) content (801 ppm) necessitates desulfurization processes to ensure equipment integrity and mitigate corrosion and pollutant emissions. It is concluded that integrating sour gas into a refinery’s energy matrix is technically viable in the long term, provided that appropriate conditioning technologies are implemented. Its use enhances operational stability, reduces costs, and optimizes the energy balance. This alternative strengthens energy self-sufficiency, improves the refinery’s operational profile, and aligns with principles of circular economy, energy transition, and sustainable modernization in accordance with international efficiency standards.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Murillo Calderon, I. A. (2025). Characterization and experimental evaluation of sour gas as an alternative fuel for power generation in refineries. FIGEMPA: Investigación Y Desarrollo, 20(2). Retrieved from https://revistadigital.uce.edu.ec/index.php/RevFIG/article/view/8007
Section
Artículos
Author Biography

Israel Alejandro Murillo Calderon, Universidad Internacional de la Rioja

Universidad Internacional de la Rioja. Ingeniería. Máster en Dirección de Operaciones y Calidad. 26006. La Rioja, Logroño, España.

References

Álvarez, L. et al. (2024) “Gas asociado de petróleo para generación eléctrica en el campo Bermejo”, Revista Conectividad, 5(1), pp. 83-92. DOI: 10.37431/conectividad.v5i1.91

Amirhossein, K. G., Mahya, N. y Mona, I. (2022) “Enviro-economic investigation of various flare gas recovery and utilization technologies in upstream and downstream of oil and gas industries”, Journal of Cleaner Production, 346. DOI: 10.1016/j.jclepro.2022.131218

Basini, L. (2005) “Issues in H2 and synthesis gas technologies for refinery, GTL and small and distributed industrial needs”, Catalysis Today, 106(1-4), pp. 34-40. DOI: 10.1016/j.cattod.2005.07.179

Biresselioglu, M. (2016) Changing Trends in the Production and Consumption of Oil and Natural Gas in the World. Exploration and Production of Petroleum and Natural Gas, pp. 657-678. DOI: 10.1520/MNL7320140015

Blumberg, L. (2021) Theory of gas chromatography. En: Poole, C. Gas chromatography. 2 ed. New York: Elsevier, pp. 19-97. DOI: 10.1016/B978-0-12-820675-1.00026-5

Bosch, H., y Janßen, F.D. (1988) “Catalytic Reduction of Nitrogen Oxides. A Review on the Fundamentals and Technology”, ChemInform, 19(31), pp. 369-531. DOI:10.1002/CHIN.198831346

Cherednichenko, O., Serbin, S. y Dzida, M. (2019) “Application of Thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units”, Polish Maritime Research, 26(3), pp. 181-187. DOI: 10.2478/pomr-2019-0059

Cherubini, F. (2010) “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals”, Energy conversion and management, 51(7), pp. 1412-1421. DOI: 10.1016/j.enconman.2010.01.015

Coker, A. K. (2018) Petroleum Refining Design and Applications Handbook. USA: John Wiley & Sons. Disponible en: https://books.google.com.ec/books?id=oGutDwAAQBAJ&printsec

Cortes, R. y Lobelles, G. (2020) Propuesta de mejora tecnológica en una refinería de petróleo: Producción y recuperación de azufre. Mauritius: Académica Española. Disponible en: https://www.amazon.com/-/he/Roxana-Cort%C3%A9s-Mart%C3%ADnez/dp/6200365458

Cusanguá, Y. et al. (2021) “Aprovechamiento del gas asociado en plataformas petroleras, caso de estudio campo Sacha”, Figempa: Investigación y Desarrollo, 12(2), pp. 26-36. DOI: 10.29166/revfig.v12i2.3090.

Dincer, I., Rosen, M. y Ahmadi, P. (2017) Optimization of Energy Systems. Wiley. DOI: 10.1002/9781118894484

Elgowainy, A. et al. (2014) “Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries”, Environmental science y technology, 48(13), pp. 7612-7624. DOI: 10.1021/es5010347

Faramawy, S., Zaki, T. y Sakr, A. (2016) “Natural gas origin, composition, and processing: A review”, Journal of Natural Gas Science and Engineering, 34, pp. 34-54. DOI: doi.org/10.1016/j.jngse.2016.06.030

Gluyas, J. y Swarbrick , R. (2021) Petroleum Geoscience. 2ª ed. New York: Springer Berlin, Heidelberg. Disponible en: https://link.springer.com/book/10.1007/978-3-642-34132-8

Guilherme, L. y Alexandrino, F. (2018) “Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry/Selected Ion Monitoring (GC×GC-MS/SIM) and Chemometrics to Enhance Inter-Reservoir Geochemical Features of Crude Oils”, Energy y Fuels, 32(8), pp. 8017-8023. DOI: 10.1021/acs.energyfuels.8b00230

Hayes, J., Barczak, R., Suffet, I. y Stuetz, R. (2023) “The use of gas chromatography combined with chemical and sensory analysis to evaluate nuisance odours in the air and water environment”, Environment International , 180, pp. 1-14. DOI: 10.1016/j.envint.2023.108214

Hester, R. y Harrison, R. (2016) Air Pollution and Health. Cambridge: The Royal Society of Chemistry. Disponible en: https://api.pageplace.de/preview/DT0400.9781847550095_A26561501/preview-9781847550095_A26561501.pdf

Kayode Coker, A. (2018) Petroleum Refining Desing and Applications Handbook. New York: John Wiley & Sons. DOI: 10.1002/9781119257110

Kohl, H. y Nielsen, R. (1997) Gas Purification. 5ª ed. Houston: Gulf Publishing Company. Disponible en: https://www.sciencedirect.com/book/9780884152200/gas-purification

Lackner, K. (2010) Comparative Impacts of Fossil Fuels and Alternative Energy Sources. United Kingdom: Royal Society of Chemistry. DOI: 10.1039/9781847559715-00001

Lee, J. y Wattenbarger, R. (1996) Gas Reservoir Engineering. 5ª ed. Society of Petroleum Engineers. DOI: 10.2118/9781555630737

Levin, D. y Chahine, R. (2010) “Challenges for renewable hydrogen production from biomass”, International Journal of Hydrogen Energy, 35(10), pp. 4692-4969. DOI: 10.1016/j.ijhydene.2009.08.067

Lyons, W., Plisga, G. y Lorenz, M. (2016) Standard Handbook of Petroleum and Natural Gas Engineering. 3ª ed. New York: Gulf Professional Publishing. Disponible en: https://www.sciencedirect.com/book/9780123838469/standard-handbook-of-petroleum-and-natural-gas-engineering

Mahya, N. y Amirhossein, K. G. (2020) “Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios”, Energy-Elvieser, 204. DOI: 10.1016/j.energy.2020.117940

Manley, D. (1998) “Thermodynamically efficient distillation: NGL fractionation”, Latin American Applied Research, 28(4), pp. 211-216. Disponible en: https://scholarsmine.mst.edu/masters_theses/1948/

Neissen, W. M. (2001) Current Practice of Gas Chromatography - Mass Spectrometry. New York: Marcel Dekker Inc. Disponible en: https://www.routledge.com/Current-Practice-of-Gas-Chromatography-Mass-Spectrometry/Niessen/p/book/9780367397425

Moliere, M. (2002) “Benefiting from the wide fuel capability of gas turbines: A review of application opportunities”, Conference Turbo Expo: Power for Land, Sea, and Air, pp. 227-238. DOI: 10.1115/GT2002-30017

EP Petroecuador (2016) Informe general de operaciones de refinación en Refinería la Libertad. Santa Elena. Documento no publicado.

Rahimpour, M. et al. (2012) “A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery”, Journal of Natural Gas Science and Engineering, 4, pp. 17-28. DOI: 10.1016/j.jngse.2011.10.001

Rahimpour, M. y Jokar, S. (2012) “Feasibility of flare gas reformation to practical energy in Farashband gas refinery: No gas flaring”, Journal of hazardous materials, 209, pp. 204-217. DOI: 10.1016/j.jhazmat.2012.01.017

Ranjan, S., Roy, C. y Kumar, S. (2023) “Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades”, Journal of Analytical Scienses and Applied Biotechnology, 5(2), pp. 72-85. DOI: 10.48402/IMIST.PRSM/jasab-v5i2.40209

Rincón, J., Silva, E. (2014) Bioenergía: Fuentes, conversión y sustentabilidad. Bogotá: Red Iberoamericana de Aprovechamiento de Residuos Orgánicos en Producción de Energía. Disponible en: https://ianas.org/wp-content/uploads/2020/07/ebp01.pdf

Speight, J. (2005) Gas Processing: Environmental Aspects. Oxford: Elsevier Science & Technology Books. Disponible en: https://www.ebay.com/itm/396443962530

Speight, J. (2014) Handbook of Petroleum Product Analysis. 2ª ed. New Jersey: John Wiley & Sons. DOI: 10.1002/9781118986370

Taha, A., Abdelalim, G. y AboulFotouh, T. (2024) “The impact of a zero-flaring system on gas plants, environment, and health”, Journal of Engineering and Applied Science, 71(131). DOI: 10.1186/s44147-024-00469-9

Vargas, J. (2016) Estudio operacional de mezclas de gases que estabilice el suministro de energía al horno de la topping U-150 de la refinería de Barrancabermeja. Tesis de maestría. Universidad Industrial de Santander. Disponible en: https://noesis.uis.edu.co/items/0cf4ecb2-ec3a-4d0b-bf2a-6325d2ad72aa

Vogt, E. y Weckhuysen, B. (2024) “The refinery of the future”, Nature, 629, pp. 295-306. DOI: 10.1038/s41586-024-07322-2

William, B. (1996). Fundamentals of Gas Turbines. 2ª ed. USA: John Wiley y Sons. Disponible en: https://es.scribd.com/document/615184941/Fundamentals-of-Gas-Turbines-William