Characterization and experimental evaluation of sour gas as an alternative fuel for power generation in refineries
Main Article Content
Abstract
In hydrocarbon refineries, combustible gases generated as byproducts during crude oil processing represent a secondary energy source with high potential for self-sufficiency. This study assesses the technical feasibility of utilizing sour gas as an alternative fuel for power generation at La Libertad Refinery, located in La Libertad canton, Santa Elena province, Ecuador—contributing to sustainability strategies and operational efficiency within the oil industry. The primary objective was to characterize the sour gas physicochemically and evaluate its energy performance under real operating conditions. Field sampling was conducted across various processing units, employing gas chromatography to determine its composition and calorific value. Furthermore, its applicability in thermal and electrical generation systems was analyzed, considering critical variables such as conversion efficiency, contaminant content, and pretreatment requirements. Results indicate that sour gas possesses a calorific value of 1.772,8 BTU/ft³, enabling the potential generation of approximately 36.014,20 kWh/day. This energy output could substantially reduce the refinery’s dependence on external electricity sources. Under optimal conditions, sour gas utilization could displace up to 9.280,60 gallons of diesel per day, lowering operating costs and minimizing the carbon footprint. However, its high hydrogen sulfide (H₂S) content (801 ppm) necessitates desulfurization processes to ensure equipment integrity and mitigate corrosion and pollutant emissions. It is concluded that integrating sour gas into a refinery’s energy matrix is technically viable in the long term, provided that appropriate conditioning technologies are implemented. Its use enhances operational stability, reduces costs, and optimizes the energy balance. This alternative strengthens energy self-sufficiency, improves the refinery’s operational profile, and aligns with principles of circular economy, energy transition, and sustainable modernization in accordance with international efficiency standards.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Álvarez, L. et al. (2024) “Gas asociado de petróleo para generación eléctrica en el campo Bermejo”, Revista Conectividad, 5(1), pp. 83-92. DOI: 10.37431/conectividad.v5i1.91
Amirhossein, K. G., Mahya, N. y Mona, I. (2022) “Enviro-economic investigation of various flare gas recovery and utilization technologies in upstream and downstream of oil and gas industries”, Journal of Cleaner Production, 346. DOI: 10.1016/j.jclepro.2022.131218
Basini, L. (2005) “Issues in H2 and synthesis gas technologies for refinery, GTL and small and distributed industrial needs”, Catalysis Today, 106(1-4), pp. 34-40. DOI: 10.1016/j.cattod.2005.07.179
Biresselioglu, M. (2016) Changing Trends in the Production and Consumption of Oil and Natural Gas in the World. Exploration and Production of Petroleum and Natural Gas, pp. 657-678. DOI: 10.1520/MNL7320140015
Blumberg, L. (2021) Theory of gas chromatography. En: Poole, C. Gas chromatography. 2 ed. New York: Elsevier, pp. 19-97. DOI: 10.1016/B978-0-12-820675-1.00026-5
Bosch, H., y Janßen, F.D. (1988) “Catalytic Reduction of Nitrogen Oxides. A Review on the Fundamentals and Technology”, ChemInform, 19(31), pp. 369-531. DOI:10.1002/CHIN.198831346
Cherednichenko, O., Serbin, S. y Dzida, M. (2019) “Application of Thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units”, Polish Maritime Research, 26(3), pp. 181-187. DOI: 10.2478/pomr-2019-0059
Cherubini, F. (2010) “The biorefinery concept: Using biomass instead of oil for producing energy and chemicals”, Energy conversion and management, 51(7), pp. 1412-1421. DOI: 10.1016/j.enconman.2010.01.015
Coker, A. K. (2018) Petroleum Refining Design and Applications Handbook. USA: John Wiley & Sons. Disponible en: https://books.google.com.ec/books?id=oGutDwAAQBAJ&printsec
Cortes, R. y Lobelles, G. (2020) Propuesta de mejora tecnológica en una refinería de petróleo: Producción y recuperación de azufre. Mauritius: Académica Española. Disponible en: https://www.amazon.com/-/he/Roxana-Cort%C3%A9s-Mart%C3%ADnez/dp/6200365458
Cusanguá, Y. et al. (2021) “Aprovechamiento del gas asociado en plataformas petroleras, caso de estudio campo Sacha”, Figempa: Investigación y Desarrollo, 12(2), pp. 26-36. DOI: 10.29166/revfig.v12i2.3090.
Dincer, I., Rosen, M. y Ahmadi, P. (2017) Optimization of Energy Systems. Wiley. DOI: 10.1002/9781118894484
Elgowainy, A. et al. (2014) “Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries”, Environmental science y technology, 48(13), pp. 7612-7624. DOI: 10.1021/es5010347
Faramawy, S., Zaki, T. y Sakr, A. (2016) “Natural gas origin, composition, and processing: A review”, Journal of Natural Gas Science and Engineering, 34, pp. 34-54. DOI: doi.org/10.1016/j.jngse.2016.06.030
Gluyas, J. y Swarbrick , R. (2021) Petroleum Geoscience. 2ª ed. New York: Springer Berlin, Heidelberg. Disponible en: https://link.springer.com/book/10.1007/978-3-642-34132-8
Guilherme, L. y Alexandrino, F. (2018) “Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry/Selected Ion Monitoring (GC×GC-MS/SIM) and Chemometrics to Enhance Inter-Reservoir Geochemical Features of Crude Oils”, Energy y Fuels, 32(8), pp. 8017-8023. DOI: 10.1021/acs.energyfuels.8b00230
Hayes, J., Barczak, R., Suffet, I. y Stuetz, R. (2023) “The use of gas chromatography combined with chemical and sensory analysis to evaluate nuisance odours in the air and water environment”, Environment International , 180, pp. 1-14. DOI: 10.1016/j.envint.2023.108214
Hester, R. y Harrison, R. (2016) Air Pollution and Health. Cambridge: The Royal Society of Chemistry. Disponible en: https://api.pageplace.de/preview/DT0400.9781847550095_A26561501/preview-9781847550095_A26561501.pdf
Kayode Coker, A. (2018) Petroleum Refining Desing and Applications Handbook. New York: John Wiley & Sons. DOI: 10.1002/9781119257110
Kohl, H. y Nielsen, R. (1997) Gas Purification. 5ª ed. Houston: Gulf Publishing Company. Disponible en: https://www.sciencedirect.com/book/9780884152200/gas-purification
Lackner, K. (2010) Comparative Impacts of Fossil Fuels and Alternative Energy Sources. United Kingdom: Royal Society of Chemistry. DOI: 10.1039/9781847559715-00001
Lee, J. y Wattenbarger, R. (1996) Gas Reservoir Engineering. 5ª ed. Society of Petroleum Engineers. DOI: 10.2118/9781555630737
Levin, D. y Chahine, R. (2010) “Challenges for renewable hydrogen production from biomass”, International Journal of Hydrogen Energy, 35(10), pp. 4692-4969. DOI: 10.1016/j.ijhydene.2009.08.067
Lyons, W., Plisga, G. y Lorenz, M. (2016) Standard Handbook of Petroleum and Natural Gas Engineering. 3ª ed. New York: Gulf Professional Publishing. Disponible en: https://www.sciencedirect.com/book/9780123838469/standard-handbook-of-petroleum-and-natural-gas-engineering
Mahya, N. y Amirhossein, K. G. (2020) “Power generation as a useful option for flare gas recovery: Enviro-economic evaluation of different scenarios”, Energy-Elvieser, 204. DOI: 10.1016/j.energy.2020.117940
Manley, D. (1998) “Thermodynamically efficient distillation: NGL fractionation”, Latin American Applied Research, 28(4), pp. 211-216. Disponible en: https://scholarsmine.mst.edu/masters_theses/1948/
Neissen, W. M. (2001) Current Practice of Gas Chromatography - Mass Spectrometry. New York: Marcel Dekker Inc. Disponible en: https://www.routledge.com/Current-Practice-of-Gas-Chromatography-Mass-Spectrometry/Niessen/p/book/9780367397425
Moliere, M. (2002) “Benefiting from the wide fuel capability of gas turbines: A review of application opportunities”, Conference Turbo Expo: Power for Land, Sea, and Air, pp. 227-238. DOI: 10.1115/GT2002-30017
EP Petroecuador (2016) Informe general de operaciones de refinación en Refinería la Libertad. Santa Elena. Documento no publicado.
Rahimpour, M. et al. (2012) “A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery”, Journal of Natural Gas Science and Engineering, 4, pp. 17-28. DOI: 10.1016/j.jngse.2011.10.001
Rahimpour, M. y Jokar, S. (2012) “Feasibility of flare gas reformation to practical energy in Farashband gas refinery: No gas flaring”, Journal of hazardous materials, 209, pp. 204-217. DOI: 10.1016/j.jhazmat.2012.01.017
Ranjan, S., Roy, C. y Kumar, S. (2023) “Gas chromatography–mass spectrometry (GC-MS): a comprehensive review of synergistic combinations and their applications in the past two decades”, Journal of Analytical Scienses and Applied Biotechnology, 5(2), pp. 72-85. DOI: 10.48402/IMIST.PRSM/jasab-v5i2.40209
Rincón, J., Silva, E. (2014) Bioenergía: Fuentes, conversión y sustentabilidad. Bogotá: Red Iberoamericana de Aprovechamiento de Residuos Orgánicos en Producción de Energía. Disponible en: https://ianas.org/wp-content/uploads/2020/07/ebp01.pdf
Speight, J. (2005) Gas Processing: Environmental Aspects. Oxford: Elsevier Science & Technology Books. Disponible en: https://www.ebay.com/itm/396443962530
Speight, J. (2014) Handbook of Petroleum Product Analysis. 2ª ed. New Jersey: John Wiley & Sons. DOI: 10.1002/9781118986370
Taha, A., Abdelalim, G. y AboulFotouh, T. (2024) “The impact of a zero-flaring system on gas plants, environment, and health”, Journal of Engineering and Applied Science, 71(131). DOI: 10.1186/s44147-024-00469-9
Vargas, J. (2016) Estudio operacional de mezclas de gases que estabilice el suministro de energía al horno de la topping U-150 de la refinería de Barrancabermeja. Tesis de maestría. Universidad Industrial de Santander. Disponible en: https://noesis.uis.edu.co/items/0cf4ecb2-ec3a-4d0b-bf2a-6325d2ad72aa
Vogt, E. y Weckhuysen, B. (2024) “The refinery of the future”, Nature, 629, pp. 295-306. DOI: 10.1038/s41586-024-07322-2
William, B. (1996). Fundamentals of Gas Turbines. 2ª ed. USA: John Wiley y Sons. Disponible en: https://es.scribd.com/document/615184941/Fundamentals-of-Gas-Turbines-William