Comparación de la eficacia de las prótesis removibles de poliéter-éter-cetona con prótesis cromo cobalto

Autores/as

DOI:

https://doi.org/10.29166/odontologia.vol27.n3.esp.2025-e8389

Palabras clave:

prótesis parcial removible, prótesis poliéter-éter-cetona (PEEK), prótesis de cromo cobalto, rehabilitación oral

Resumen

El poliéter-éter-cetona (PEEK) es un material polimérico formado por un núcleo aromático unido por grupos cetona y éter. El objetivo fue comparar la eficacia de las prótesis removibles de poliéter-éter-cetona con la de las prótesis removibles tradicionales. Se realizó una revisión sistemática siguiendo las recomendaciones de la guía PRISMA para lo cual se realizaron búsquedas en bases de datos como PubMed, LILACS, SCOPUS, EMBASE y ScienceDirect y se incluyeron 20 artículos publicados entre 2020 y 2024. Las principales características de las prótesis removibles PEEK son su alta biocompatibilidad, buenas propiedades mecánicas, resistencia a altas temperaturas, estabilidad química, capacidad de pulido, buena resistencia al desgaste, baja afinidad con la placa y alta resistencia de adhesión con resinas compuestas. Tienen un bajo peso específico lo que contribuye a que sean una prótesis más ligeras y cómodas, tienen un módulo de elasticidad bajo similar al del hueso, no tiene un color metálico, en cambio existen tonalidades, beige, rosa y blanco por lo que sus propiedades estéticas son superiores a las convencionales. Como desventajas tienen que la retención y la resistencia a la fatiga de los ganchos de PEEK eran inferiores a las de los ganchos metálicos. Las prótesis removibles PEEK tienen una resistencia al desgaste similar a la de las aleaciones de metal, aunque tiene una resistencia elástica algo pobre y una dureza baja aumentando el riesgo a las fracturas.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alexy Javier Lucas, Universidad Laica Eloy Alfaro de Manabi

Estudiante Facultad de Ciencias de la Salud Universidad Laica “Eloy Alfaro” de Manabí, Manta, Ecuador

Miguel Carrasco Sierra, Universidad Laica Eloy Alfaro de Manabí

Docente Facultad de Ciencias de la Salud Universidad Laica “Eloy Alfaro” de Manabí, Manta, Ecuador

Citas

Kim JJ. Revisiting the Removable Partial Denture. Dent Clin North Am. 2019;63(2):263–78. https://doi.org/10.1016/j.cden.2018.11.007

Silva LS, Bento VAA, Brunetto JL, Pesqueira AA. Polyetheretherketone materials for removable partial denture frameworks: an integrative review. Gen Dent. 2023;71(4):58–62. https://europepmc.org/article/med/37358585

Liu Y, Fang M, Zhao R, et al. Clinical Applications of Polyetheretherketone in Removable Dental Prostheses: Accuracy, Characteristics, and Performance. Polymers (Basel). 2022;14(21). https://doi.org/10.3390/polym14214615

Campbell SD, Cooper L, Craddock H, et al. Removable partial dentures: The clinical need for innovation. J Prosthet Dent. 2017;118(3):273–80. https://doi.org/10.1016/j.prosdent.2017.01.008

Parate KP, Naranje N, Vishnani R, Paul P. Polyetheretherketone Material in Dentistry. Cureus. 2023;15(10):e46485. https://doi.org/10.7759/cureus.46485

Le Bars P, Kouadio AA, Amouriq Y, Bodic F, Blery P, Bandiaky ON. Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures. Polymers (Basel). 2023;16(1). https://doi.org/10.3390/polym16010040

Wang B, Huang M, Dang P, Xie J, Zhang X, Yan X. PEEK in Fixed Dental Prostheses: Application and Adhesion Improvement. Polymers (Basel). 2022;14(12). https://doi.org/10.3390/polym14122323

Luo Y, Qiu L, Geng M, Zhang W. Retention and fatigue performance of modified polyetheretherketone clasps for removable prosthesis. J Mech Behav Biomed Mater. 2024; 154:106539. https://doi.org/10.1016/j.jmbbm.2024.106539

Guo F, Huang S, Liu N, et al. Evaluation of the mechanical properties and fit of 3D-printed polyetheretherketone removable partial dentures. Dent Mater J. 2022;41(6):816–823. https://doi.org/10.4012/dmj.2022-063

Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018;18(1):1–7. https://doi.org/10.1186/s12874-018-0611-x

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71

Lee W-F, Chen M-S, Peng T-Y, Huang P-C, Nikawa H, Peng P-W. Comparative analysis of the retention force and deformation of PEEK and PEKK removable partial denture clasps with different thicknesses and undercut depths. J Prosthet Dent. 2024;131(2):291.e1-291.e9. https://doi.org/10.1016/j.prosdent.2023.09.042

Zhao K, Wu S, Qian C, Sun J. Suitability and Trueness of the Removable Partial Denture Framework Fabricating by Polyether Ether Ketone with CAD-CAM Technology. Polymers (Basel). 2024;16(8). https://doi.org/10.3390/polym16081119

Gentz FI, Brooks DI, Liacouras PC, et al. Retentive Forces of Removable Partial Denture Clasp Assemblies Made from Polyaryletherketone and Cobalt-Chromium: A Comparative Study. J Prosthodont. 2022;31(4):299–304. https://doi.org/10.1111/jopr.13398

Zheng J, Aarts JM, Ma S, Waddell JN, Choi JJE. Different Undercut Depths Influence on Fatigue Behavior and Retentive Force of Removable Partial Denture Clasp Materials: A Systematic Review. J Prosthodont. 2023;32(2):108–15. https://doi.org/10.1111/jopr.13519

Zheng J, Aarts JM, Ma S, Waddell JN, Choi JJE. Fatigue behavior of removable partial denture cast and laser-sintered cobalt-chromium (CoCr) and polyetheretherketone (PEEK) clasp materials. Clin Exp Dent Res. 2022;8(6):1496–504. https://doi.org/10.1002/cre2.645

Souza Curinga MR, Claudino Ribeiro AK, de Moraes SLD, do Egito Vasconcelos BC, da Fonte Porto Carreiro A, Pellizzer EP. Mechanical properties and accuracy of removable partial denture frameworks fabricated by digital and conventional techniques: A systematic review. J Prosthet Dent. 2023. https://doi.org/10.1016/j.prosdent.2023.01.032

Micovic D, Mayinger F, Bauer S, Roos M, Eichberger M, Stawarczyk B. Is the high-performance thermoplastic polyetheretherketone indicated as a clasp material for removable dental prostheses? Clin Oral Investig. 2021;25(5):2859–66. https://doi.org/10.1007/s00784-020-03603-y

Abd Allah DAEM, Nawar NH, Abdelfattah AM. Effect of two esthetic digitally produced materials used in fabrication of extracoronal attachments on the stresses Induced in removable partial dentures. BMC Oral Health. 2024;24(1):760. https://doi.org/10.1186/s12903-024-04477-2

El-Baz R, Fayad M, Abas M, Shoieb A, Gad M, Helal MA. Comparative study of some mechanical properties of cobalt chromium and polyether ether ketone thermoplastic removable partial denture clasps: an In-vitro Study. Brazilian Dent Sci. 2020;23(3). https://doi.org/10.14295/bds.2020.v23i3.1935

Maraka N, Alaa’a Salloum MA. Comparative study between removable partial dentures frameworks fabricated using PEEK and using Co-Cr alloy: clinical study. Teikyo Med J. 2021;44(6):2685–2692.

Barbosa L, Figueiral MH, Neves CB, et al. Fit Accuracy of Cobalt–Chromium and Polyether Ether Ketone Prosthetic Frameworks Produced Using Digital Techniques: In Vitro Pilot Study. Appl Sci. 2024;14(1). https://doi.org/10.3390/app14010118

Galvão I, Carvalho P, Feitosa R, Sousa E, MTV G, V F. Propriedades biomecânicas do poli-éter-éter-cetona (PEEK) e sua aplicação na clínica odontológica: uma revisão de literatura. J Dent Public Heal. 2020;11(1 SE-Revisões de Literatura):67–72. https://doi.org/10.17267/2596-3368dentistry.v11i1.2896

El Mekawy N, Elgamal M. Retention Assessment of High Performance Poly-etheretherketone Removable Partial Denture Frameworks Constructed by Various Techniques (in vitro Study). J Dent (Shiraz, Iran). 2021;22(4):281–289. https://doi.org/10.30476/DENTJODS.2021.87488.1265

Hamid NFA, Ahmad R, Ariffin F, Shuib S. Poly-Ether-Ether-Ketone (PEEK) Removable Partial Dentures: A Scoping Review. Arch Orofac Sci. Published online 2024. https://aos.usm.my/docs/Vol_19/aos-2024-0004.pdf

Le Bars P, Bandiaky ON, Le Guéhennec L, Clouet R, Kouadio AA. Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties. Polymers (Basel). 2023;15(17). https://doi.org/10.3390/polym15173495

Papathanasiou I, Kamposiora P, Papavasiliou G, Ferrari M. The use of PEEK in digital prosthodontics: A narrative review. BMC Oral Health. 2020;20(1):217. https://doi.org/10.1186/s12903-020-01202-7

Çulhaoğlu AK, Özkır SE, Şahin V, Yılmaz B, Kılıçarslan MA. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials. J Prosthodont. 2020;29(2):136–141. https://doi.org/10.1111/jopr.12702

Moby V, Dupagne L, Fouquet V, Attal J-P, François P, Dursun E. Mechanical Properties of Fused Deposition Modeling of Polyetheretherketone (PEEK) and Interest for Dental Restorations: A Systematic Review. Mater (Basel, Switzerland). 2022;15(19). https://doi.org/10.3390/ma15196801

Publicado

2025-12-31

Cómo citar

Lucas, A. J., & Carrasco Sierra, M. (2025). Comparación de la eficacia de las prótesis removibles de poliéter-éter-cetona con prótesis cromo cobalto. Odontología, 27(Especial (3). https://doi.org/10.29166/odontologia.vol27.n3.esp.2025-e8389

Número

Sección

Artículo Científico

Artículos más leídos del mismo autor/a